

Contaminazione area Oleodotto SARPOM DN 8" Trecate Savona Vado Ligure in Comune di Gravellona Lomellina – Loc. Salto Crocetta

ANALISI DI RISCHIO

D. Lgs. 152/06

Aprile 2019

Beta S.r.l.

Tecnologie di Bonifica e Monitoraggio www.betabonifiche.com

Certificato ISO 14001:2015 RINA n. EMS-6774/S
Certificato ISO 9001:2015 Apave Certification Italia n.° SC 07-1373 Rev. 07

Uffici di Progettazione: Corte degli Arrotini, 1 28100 NOVARA Tel. 0321/499488 Fax 0321/520037 e-mail: novara@betabonifiche.com Sede Operativa: Via Segrino, 6 20098 Sesto Ulteriano di S. Giuliano Mil.se (MI) Tel. 02/9880762 Fax 02/98281628 e-mail: milano@betabonifiche.com

- Raffineria di Trecate -

Contaminazione area Oleodotto SARPOM DN 8" Trecate Savona Vado Ligure in Comune di Gravellona Lomellina – Loc. Salto Crocetta

ANALISI DI RISCHIO

D. Lgs. 152/06

RELAZIONE			B16/020/04 Scala:
Emissione:	Revisione:	Emesso:	Verificato: Approvatorco
5 aprile 2019	n. del:	L. Quarto	L. Quarto M. Carmine
		IL PRESENTE ELABORATO E OGNI RIPRODUZIONE TO	O DI PROPRIETA O DELLA BETA S.R.L.; E PERTANTO PROIBITA, A TERMINEDI LEGGE. TALE O PARZIALE DI ESSO EFFETTUATA SENZA LA REVENTIVA AUTORIZZAZIONE

N. Elaborato

Beta S.r.l.

Tecnologie di Bonifica e Monitoraggio www.betabonifiche.com

Certificato ISO 14001:2015 RINA n. EMS-6774/S

Certificato ISO 9001:2015 Apave Certification Italia n.° SC 07-1373 Rev. 07

Uffici di Progettazione: Corte degli Arrotini, 1 28100 NOVARA Tel. 0321/499488 Fax 0321/520037 e-mail: novara@betabonifiche.com Sede Operativa: Via Segrino, 6 20098 Sesto Ulteriano di S. Giuliano Mil.se (MI) Tel. 02/9880762 Fax 02/98281628 e-mail: milano@betabonifiche.com

Nome file: B16/020/04 ADR

INDICE

1.		PREMESSA	\	. 4
2.		SINTESI RIS	SULTATI INDAGINI	. 6
	2.	1 TERREN	IO INSATURO	. 6
		2.1.1	ASSETTO STRATIGRAFICO	. 6
		2.1.2	RISULTATI ANALISI	. 7
	2.	2 ACQUE	SOTTERRANEE	12
		2.2.1	ANDAMENTO LIVELLI DI FALDA E PIEZOMETRIA	12
		2.2.2	RISULTATI ANALISI	14
3.		Modello	CONCETTUALE DEFINITIVO	19
	3.	1 Sorger	NTI DI CONTAMINAZIONE	19
		3.1.1	SUOLO SUPERFICIALE	19
		3.1.2	SUOLO PROFONDO	19
		3.1.3	ACQUE SOTTERRANEE	20
	3.	2 MECCA	NISMI DI TRASPORTO — PERCORSI DI ESPOSIZIONE — BERSAGLI	21
		3.2.1	SUOLO SUPERFICIALE	23
		3.2.2	SUOLO PROFONDO	23
		3.2.3	ACQUE SOTTERRANEE	24
4.		Analisi di	RISCHIO	25
	4.	1 Modal	LITÀ DI SVILUPPO DELLO STUDIO	25
	4.	2 Concei	NTRAZIONI RAPPRESENTATIVE SORGENTE — CRS	26
		4.2.1	SUOLO SUPERFICIALE	26
		4.2.2	SUOLO PROFONDO	28
		4.2.3	ACQUE SOTTERRANEE	29
	4.	3 PARAM	ETRI ESPOSIZIONE LAVORATORI	31
	4.	4 CARATT	TERISTICHE DEL SITO	32
		4.4.1	GEOMETRIA SORGENTI – SUOLO SUPERFICIALE (§ TAVOLA 8)	36
		4.4.2	GEOMETRIA SORGENTI – SUOLO PROFONDO (§ TAVOLA 9)	37

		4.4.3	GEOMETRIA SORGENTI – FALDA (§ TAVOLE 6 E 7)	. 38
		4.4.4	ZONA INSATURA — TESSITURA	. 39
		4.4.5	ZONA INSATURA – CARATTERISTICHE	. 40
		4.4.6	ZONA INSATURA – INFILTRAZIONE NEL SOTTOSUOLO	. 42
		4.4.7	ZONA SATURA — TESSITURA	. 42
		4.4.8	ZONA SATURA — CARATTERISTICHE	. 43
		4.4.9	ZONA SATURA — TRASPORTO E DISPERSIONE IN FALDA	. 44
		4.4.10	Ambiente outdoor – dati meteo	. 44
5.		Risultati		. 46
	5.1	L Suolo	SUPERFICIALE	. 46
		5.1.1	ELABORAZIONE E1 – MINIMA SOGGIACENZA	. 46
		5.1.2	ELABORAZIONE E2 — MASSIMA SOGGIACENZA	. 46
	5.2	2 Suolo	PROFONDO	. 47
		5.2.1	ELABORAZIONE E1 – MINIMA SOGGIACENZA	. 47
		5.2.2	ELABORAZIONE E2 — MASSIMA SOGGIACENZA	. 47
	5.3	ACQUE	SOTTERRANEE (ELABORAZIONE E3)	. 48
	5.4	1 VALUTA	ZIONE COMPLESSIVA DEI RISULTATI	. 49
6.		OBIETTIVI	DI BONIFICA	. 50
	6.1	L Suolo	SUPERFICIALE	. 50
	6.2	Suolo	PROFONDO	. 51
	6.3	B FALDA .		. 52
	6.4	VERIFIC	A ACCETTABILITÀ OBIETTIVI DI BONIFICA (ELABORAZIONE E4)	. 52
	6.5	CONFR	DNTO CRS VS OBIETTIVI DI BONIFICA	. 53
		6.5.1	SUOLO SUPERFICIALE	. 54
		6.5.2	SUOLO PROFONDO	. 55
		6.5.3	FALDA	. 61
7.		Conclusi	ONI	. 62

ELENCO ELABORATI

ELENCO TAVOLE

TAVOLA 1	UBICAZIONE INDAGINI
TAVOLA 2	SEZIONI RAPPRESENTATIVE
TAVOLA 3	UBICAZIONE PIEZOMETRI E PIEZOMETRIA
TAVOLA 4	DIFFUSIONE CONTAMINAZIONE SUOLO SUPERFICIALE
TAVOLA 5	DIFFUSIONE CONTAMINAZIONE SUOLO PROFONDO
Tavola 6	DIFFUSIONE ED ESTENSIONE CONTAMINAZIONE FALDA ON SITE
Tavola 7	DIFFUSIONE ED ESTENSIONE CONTAMINAZIONE FALDA OFF SITE
Tavola 8	ESTENSIONE SORGENTE SUOLO SUPERFICIALE
Tavola 9	ESTENSIONE SORGENTE SUOLO PROFONDO
TAVOLA 10	SUPERAMENTI CSR SUOLO PROFONDO

ELENCO ALLEGATI

ALLEGATO 1	RAPPORTI DI PROVA MONITORAGGIO 7/7/2017
ALLEGATO 2	RAPPORTI DI PROVA MONITORAGGIO 21/7/2017
ALLEGATO 3	RAPPORTI DI PROVA MONITORAGGIO 12/10/2017
ALLEGATO 4	RAPPORTI DI PROVA MONITORAGGIO 9/11/2017
ALLEGATO 5	RAPPORTI DI PROVA MONITORAGGIO 11/1/2018
ALLEGATO 6	RAPPORTI DI PROVA MONITORAGGIO 15/2/2018
Allegato 7	RAPPORTI DI PROVA MONITORAGGIO 20/3/2018
ALLEGATO 8	RAPPORTI DI PROVA MONITORAGGIO 19/6/2018
ALLEGATO 9	RAPPORTI DI PROVA MONITORAGGIO 31/7/2018
ALLEGATO 10	RAPPORTI DI PROVA MONITORAGGIO 28/8/2018
ALLEGATO 11	RAPPORTI DI PROVA MONITORAGGIO 25/9/2018
ALLEGATO 12	RAPPORTI DI PROVA MONITORAGGIO 23/10/2018
ALLEGATO 13	RAPPORTI DI PROVA MONITORAGGIO 20/11/2018
ALLEGATO 14	RAPPORTI DI PROVA MONITORAGGIO 18/12/2018
ALLEGATO 15	RAPPORTI DI PROVA MONITORAGGIO 25/1/2019
ALLEGATO 16	FILES ELABORAZIONI E0-E4
ALLEGATO 17	FILES ELABORAZIONI PRO UCL
ALLEGATO 18	FILES DATI METEOCLIMATICI

1. PREMESSA

Il presente documento, redatto su incarico di *SARPOM S.r.I.* costituisce l'Analisi di Rischio sito specifica, prevista dal D.Lgs. 152/06, relativamente al sito di Gravellona Lomellina (PV), Località Salto Crocetta, risultato contaminato a seguito di due tentativi di effrazione sull'Oleodotto DN 8" Trecate Savona Vado Ligure, denominati "Manomissione n. 1" e "Manomissione n. 2".

Lo studio è stato sviluppato attraverso l'impiego del software Risk-Net 3.1, che utilizza:

- la procedura descritta nel documento di riferimento dell'ex APAT, ora ISPRA "Criteri metodologici per l'applicazione dell'analisi assoluta di rischio ai siti contaminati", Revisione 2, marzo 2008, di seguito Linee Guida;
- i criteri stabiliti dalle Linee Guida emanate dal Ministero dell'Ambiente per la Tutela del Territorio e del Mare (Linee Guida MATTM) del Novembre 2014;
- la Banca Dati ISS-INAIL per Analisi di Rischio Sanitario Ambientale, aggiornata al marzo 2018.

Il sito è stato oggetto di una prima campagna di indagine, documentata nel Piano della Caratterizzazione, svolta nell'ambito degli interventi di riparazione della tubazione (aprile – maggio 2016), che hanno permesso di accertare una contaminazione a carico del terreno insaturo al di sotto della quota di posa dell'oleodotto, in prossimità del punto di manomissione individuato come "n.1".

Le indagini relative al Piano della Caratterizzazione, approvato dal Comune di Gravellona Lomellina con propria Determinazione n. 50/2016 del 6/9/2016, sono state svolte in contraddittorio con ARPA Pavia, tra il 2/5 e il 22/5/2017 e hanno permesso di circoscrivere parzialmente la contaminazione nel terreno insaturo, oltre ad accertare la presenza di contaminazione a carico della matrice acque sotterranee.

Alla luce delle evidenze di contaminazione rilevate in falda sono state avviate attività di Pump & Stock che, come da comunicazioni trasmesse alle PP.AA., prevedono l'emungimento delle acque dai piezometri presenti presso l'area di studio, e lo smaltimento delle stesse presso impianti autorizzati, con frequenza bisettimanale.

Una terza campagna di indagine è stata svolta nell'aprile 2018, in contraddittorio con ARPA Pavia, allo scopo di definire in maniera completa la perimetrazione della contaminazione nel sottosuolo insaturo a Nord della zona in cui è stata rilevata l'effrazione a carico dell'Oleodotto.

In ottemperanza alle richieste formulate dagli enti, nel dicembre 2018 sono stati realizzati i piezometri di monitoraggio di valle PZ6, PZ7, PZ8 e PZ9, oggetto di monitoraggio a partire dalla campagna del 25/1/2019, documentata nel presente documento.

Parallelamente all'esecuzione di tali attività sono state presentate, al competente ufficio provinciale e presso il Consorzio Irriguo Est Sesia, le istanze per l'autorizzazione allo scarico in corpo idrico superficiale e per la concessione ai fini della realizzazione delle opere necessarie per l'installazione di un impianto Pump & Treat, attualmente in corso di realizzazione, per la Messa in Sicurezza della falda; le attività di Pump & Stock verranno pertanto mantenute in essere, nelle more dell'avvio degli impianti.

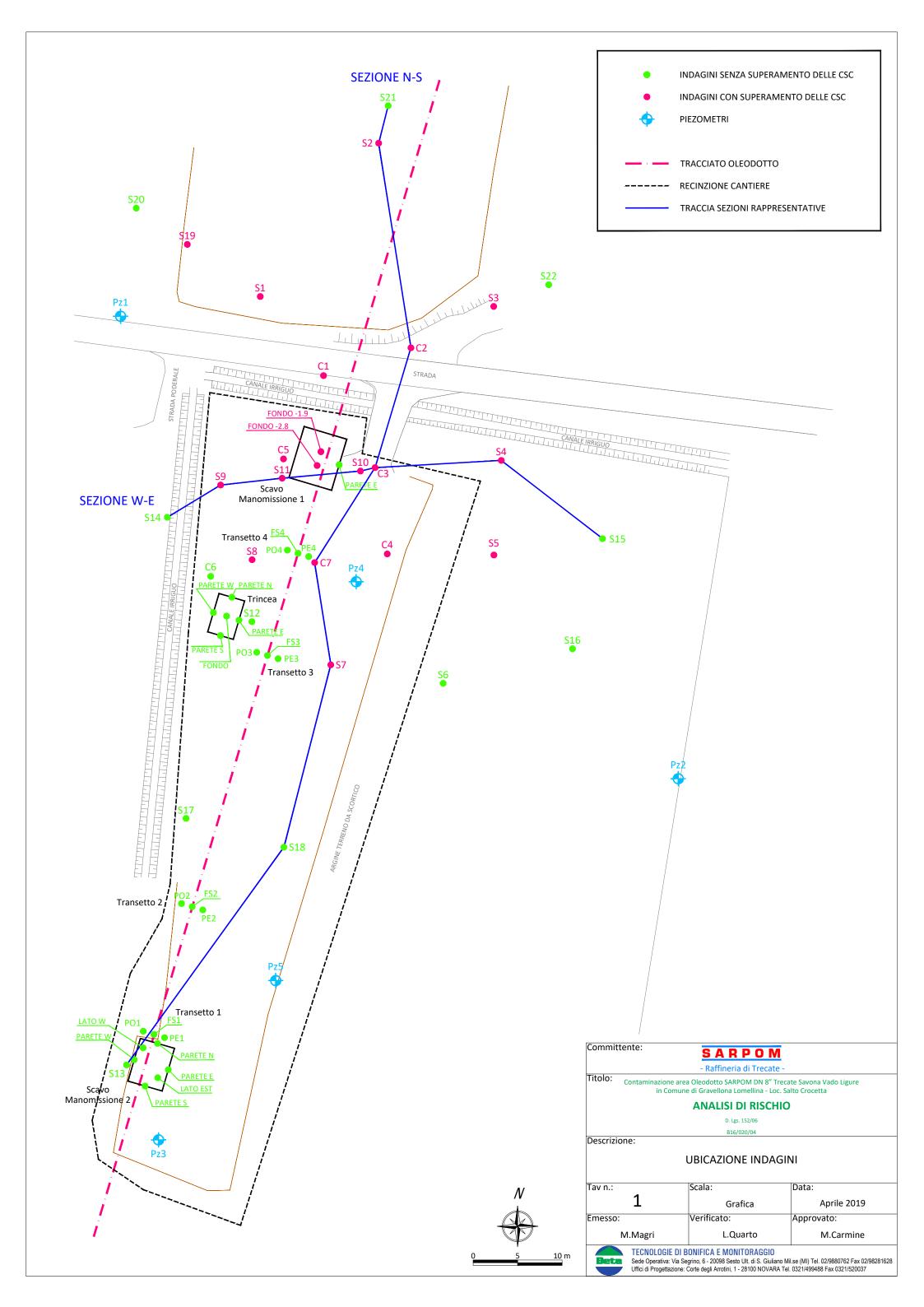
2. SINTESI RISULTATI INDAGINI

2.1 TERRENO INSATURO

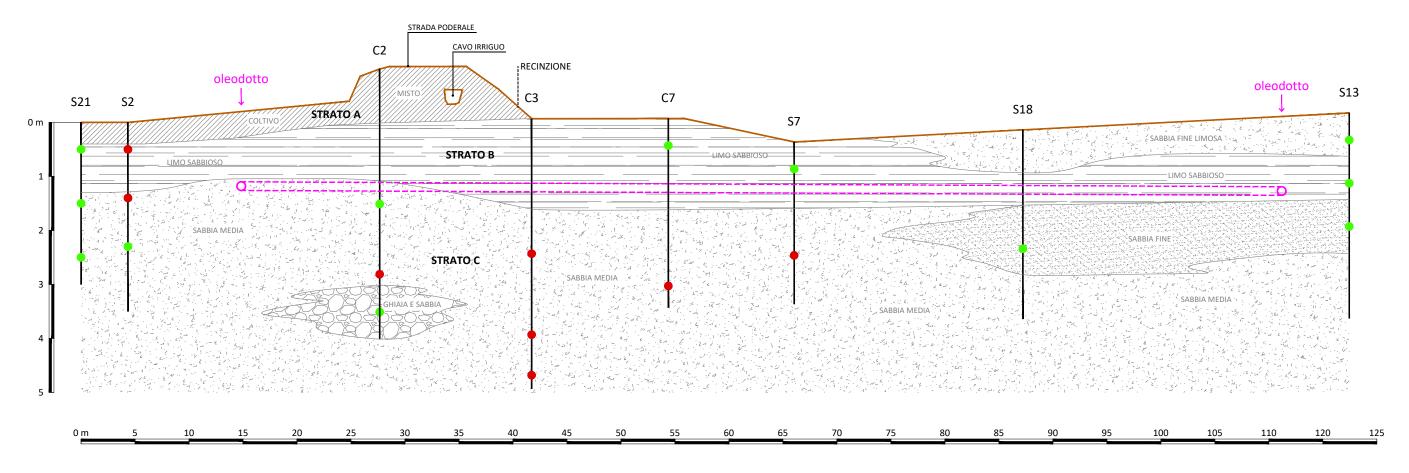
Come accennato in premessa, il terreno insaturo è stato oggetto di complessive 3 campagne di indagine, svolte rispettivamente:

- Nei mesi di aprile e maggio 2016, nell'ambito degli interventi di messa in sicurezza d'emergenza e riparazione delle 2 effrazioni rilevate;
- Nel maggio 2017, in contraddittorio con ARPA Pavia, nell'ambito delle attività previste dal piano della caratterizzazione;
- Nell'aprile 2018, in contraddittorio con ARPA Pavia, nell'ambito delle indagini integrative volte a completare la perimetrazione della contaminazione del terreno insaturo sul lato N.

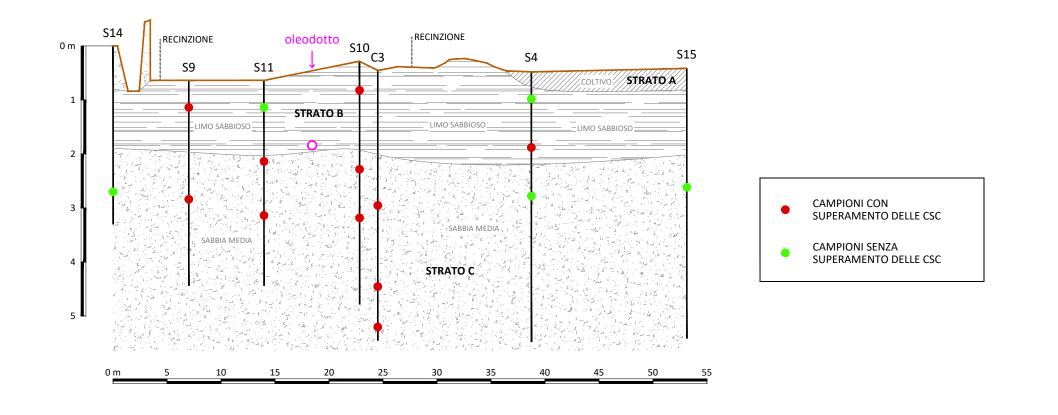
Complessivamente, tra le varie campagne di indagine, ai fini della caratterizzazione della qualità ambientale dei terreni sono stati eseguiti:


- 7 pozzetti esplorativi / trincee esplorative, con prelievo complessivo di 28 campioni di terreno;
- 29 sondaggi, con prelievo complessivo di 62 campioni di terreno (109, considerando i campioni puntuali prelevati per l'analisi dei composti volatili).

L'ubicazione delle indagini svolte nell'ambito delle diverse campagne è rappresentata in Tavola 1; tutti i risultati delle indagini svolte sono stati oggetto di precedenti trasmissioni agli enti di controllo.


2.1.1 ASSETTO STRATIGRAFICO

Nell'ambito della realizzazione dei sondaggi sono state rilevate le stratigrafie dei terreni attraversati e sono stati prelevati 2 campioni da sottoporre ad analisi di laboratorio per la determinazione della tessitura.


L'assetto stratigrafico rilevato è rappresentato nelle sezioni di Tavola 2, nelle quali si evidenzia come, in corrispondenza dell'area presso la quale sono state rilevate le effrazioni, il terreno di coltivo (circa 40 cm) è stato preventivamente rimosso e accantonato a costituzione di un argine laterale mentre, nelle aree esterne al sito di indagine, tale coltre risulta presente.

SEZIONE N-S

SEZIONE W-E

Committente: SARPOM - Raffineria di Trecate Contaminazione area Oleodotto SARPOM DN 8" Trecate Savona Vado Ligure in Comune di Gravellona Lomellina - Loc. Salto Crocetta **ANALISI DI RISCHIO** Descrizione: SEZIONI RAPPRESENTATIVE Tav n.: Scala: Data: Aprile 2019 Grafica Emesso: Verificato: Approvato: M.Magri L.Quarto M.Carmine TECNOLOGIE DI BONIFICA E MONITORAGGIO Sede Operativa: Via Segrino, 6 - 20098 Sesto Ult. di S. Giuliano Mil.se (MI) Tel. 02/9880762 Fax 02/98281628 Uffici di Progettazione: Corte degli Arrotini, 1 - 28100 NOVARA Tel. 0321/499488 Fax 0321/520037 La descrizione dell'assetto stratigrafico è di seguito riportata:

- Tra p.c. e 0,2/1 mt di profondità, presso le aree in cui il terreno agrario non è stato scarificato: Terreno agrario, di colore marrone scuro (di seguito denominato STRATO A);
- Tra p.c. e 1,0/2,1 mt di profondità, presso le aree in cui il terreno agrario è stato scarificato: Limo sabbioso di colore marrone chiaro-rossiccio (di seguito STRATO B);
- Tra 1,0/2,1 e 5,0 mt di profondità: Sabbia fine-media, a tratti debolmente limosa, di colore grigio-marrone (di seguito STRATO C), con locale presenza di lenti a composizione in parte ghiaiosa.

A suffragio delle evidenze osservate sono stati eseguiti campionamenti per gli strati B e C in corrispondenza del sondaggio S19; i campioni prelevati sono stati sottoposti a prova di laboratorio per la determinazione della tessitura i cui risultati, già resi noti agli enti, hanno evidenziato quanto segue:

	Unità di	S19-STRATO B	S19-STRATO C
Parametro	Misura	(0,3-1,7mt)	(1,7-2,8 mt)
ghiaia	%	0,2	0,1
argilla	%	14,1	6,22
limo	%	71,7	14,1
sabbia	%	14	79,5

Tabella 1 – Tessitura terreno

I dati in tabella sono stati utilizzati per determinare, attraverso il diagramma triangolare ALS (§ Linee Guida ISPRA AdR, pag. 58), la tessitura dei due strati, ottenendo per lo strato B una tessitura afferente alla tipologia "Silt Loam", ovvero Franco Limoso, e per lo strato C una tessitura afferente alla tipologia "Loamy Sand" ovvero Sabbioso Franco.

In entrambi i casi, in via cautelativa, la percentuale di ghiaia rilevata, per quanto estremamente bassa, è stata considerata sabbia.

2.1.2 RISULTATI ANALISI

Le analisi condotte sui campioni di terreno hanno permesso di delimitare compiutamente la contaminazione nel sottosuolo insaturo rilevata; i rapporti di prova sono già stati resi disponibili agli enti di controllo mediante precedenti trasmissioni mentre i risultati sono riassunti nelle tabelle di cui alle pagine seguenti.

Parametro	residuo a 105 °C	sottovaglio 2cm	sottovaglio 2mm	scheletro	benzene	etilbenzene	stirene	toluene	o-xilene	m,p-xilene	xilene	Sommatoria organici aromatici	idrocarburi C<=12	MtBE	idrocarburi C>12	foc
CSC TAB 1A	-	-	-	-	0,1	0,5	0,5	0,5	0,5	(*)	0,5	1	10	10 (*)	50	-
U.M.	%	%	%	g/Kg						mg/K	g ss					g/Kg
C0 Manom. 1 0-1,10 m (Parete E)	88	< 0.5	99,7		< 0,01	< 0,05	< 0,05	< 0,05			< 0,05	< 0,05	< 1	< 0,01	< 25	
C1 Manom. 1 1,90 m (Fondo 1)	92,1	3,5	96,5		7	71,1	< 0,05	160			229	460	1440	5,7	8821	
C2 Manom. 1 2,80 m (Fondo 2)	92,8	5,5	94,5		6,6	76,9	< 0,05	193			253	523	1735	3,3	20357	
C0 Manom. 2 0-0,9 m (Pareti)	84,5	0,61	99,4		< 0,01	< 0,05	< 0,05	< 0,05			< 0,05	< 0,05	< 1	< 0,01	< 25	
C1 Manom. 2 (Parete Ovest) 1,4 m	94,1	2	98		< 0,01	< 0,05	< 0,05	< 0,05			< 0,05	< 0,05	< 1	< 0,01	< 25	
C1 Manom. 2 (Parete Nord) 1,4 m	89,2	4,3	95,7		< 0,01	< 0,05	< 0,05	< 0,05			< 0,05	< 0,05	< 1	< 0,01	< 25	
C1 Manom. 2 (Parete Est) 1,4 m	95,5	1,7	98,3		< 0,01	< 0,05	< 0,05	< 0,05			< 0,05	< 0,05	< 1	< 0,01	< 25	
C1 Manom. 2 (Parete Sud) 1,4 m	92,5	1,9	98,1		< 0,01	< 0,05	< 0,05	< 0,05			< 0,05	< 0,05	< 1	< 0,01	< 25	
C2 A (FS Ovest) Manom. 2 3,0 m	89,3	2,4	97,6		< 0,01	< 0,05	< 0,05	< 0,05			< 0,05	< 0,05	< 1	< 0,01	< 25	
C2 B (FS Est) Manom. 2 3,0 m	86,7	6	94		< 0,01	< 0,05	< 0,05	< 0,05			< 0,05	< 0,05	< 1	< 0,01	< 25	

Tabella 2 – Risultati analisi campioni scavi manomissione 1 e 2 (* limite suggerito da ISS)

Parametro	residuo a 105 °C	sottovaglio 2cm	sottovaglio 2mm	scheletro	benzene	etilbenzene	stirene	toluene	o-xilene	m,p-xilene	xilene	Sommatoria organici aromatici	idrocarburi C<=12	MtBE	idrocarburi C>12	foc
CSC TAB 1A	-	-	-	-	0,1	0,5	0,5	0,5	0,5	(*)	0,5	1	10	10 (*)	50	-
U.M.	%	%	%	g/Kg						mg/Kg	g ss					g/Kg
C0 Trincea Parete W 0-1,8 m	79,9	0,7	99,3		< 0,01	< 0,05	< 0,05	< 0,05			< 0,05	< 0,05	< 1	< 0,01	< 25	
C2 Trincea Fondo scavo 2,8 m	89,7	12,1	87,9		< 0,01	< 0,05	< 0,05	< 0,05			< 0,05	< 0,05	< 1	< 0,01	< 25	
C4 Trincea (Parete SUD) 2,0 m	93	0,58	99,4		< 0,01	< 0,05	< 0,05	< 0,05			< 0,05	< 0,05	< 1	< 0,01	< 25	
C1 Trincea (Parete EST) 2,0 m	93,5	4,5	95,5		< 0,01	< 0,05	< 0,05	< 0,05			< 0,05	< 0,05	< 1	< 0,01	< 25	
C1 Trincea (Parete OVEST) 2,0 m	94,8	1,4	98,6		< 0,01	< 0,05	< 0,05	< 0,05			< 0,05	< 0,05	< 1	< 0,01	< 25	
C3 Trincea (Parete NORD) 2,0 m	94,4	2,5	97,6		< 0,01	< 0,05	< 0,05	< 0,05			< 0,05	< 0,05	< 1	< 0,01	< 25	

Tabella 3 – Risultati analisi campioni trincea laterale (* limite suggerito da ISS)

Parametro	residuo a 105 °C	sottovaglio 2cm	sottovaglio 2mm	scheletro	benzene	etilbenzene	stirene	toluene	o-xilene	m,p-xilene	xilene	Sommatoria organici aromatici	idrocarburi C<=12	MtBE	idrocarburi C>12	foc
CSC TAB 1A	-	•	-	-	0,1	0,5	0,5	0,5	0,5	(*)	0,5	1	10	10 (*)	50	-
U.M.	%	%	%	g/Kg						mg	/Kg ss					g/Kg
T1-PO1 (med.)	90	1,9	98,1		< 0,01	< 0,05	< 0,05	< 0,05			< 0,05	< 0,05	< 1	< 0,01	< 25	
T1-PE1 (med.)	92,6	2,9	97,1		< 0,01	< 0,05	< 0,05	< 0,05			< 0,05	< 0,05	< 1	< 0,01	< 25	
T1-FS1 (-2 m)	94,9	6,1	93,9		< 0,01	< 0,05	< 0,05	< 0,05			< 0,05	< 0,05	< 1	< 0,01	< 25	
T2-PO2 (med.)	91	1,8	98,2		< 0,01	< 0,05	< 0,05	< 0,05			< 0,05	< 0,05	< 1	< 0,01	< 25	
T2-PE2 (med.)	90,1	1,1	98,9		< 0,01	< 0,05	< 0,05	< 0,05			< 0,05	< 0,05	< 1	< 0,01	< 25	
T2-FS2 (-2 m)	91,9	2,4	97,6		< 0,01	< 0,05	< 0,05	< 0,05			< 0,05	< 0,05	< 1	< 0,01	< 25	
T3-PO3 (med.)	83,8	1,4	98,6		< 0,01	< 0,05	< 0,05	< 0,05			< 0,05	< 0,05	< 1	< 0,01	< 25	
T3-PE3 (med.)	86,6	1,1	98,9		0,01	< 0,05	< 0,05	0,07			< 0,05	0,07	< 1	< 0,01	< 25	
T3-FS3 (-2 m)	92,9	0,92	99,1		< 0,01	< 0,05	< 0,05	< 0,05			< 0,05	< 0,05	< 1	< 0,01	< 25	
T4-PO4 (med.)	92,3	< 0.5	99,7		< 0,01	< 0,05	< 0,05	< 0,05			< 0,05	< 0,05	< 1	0,03	< 25	
T4-PE4 (med.)	94,5	< 0.5	99,7		< 0,01	< 0,05	< 0,05	< 0,05			< 0,05	< 0,05	< 1	0,21	< 25	
T4-FS4 (-2 m)	95,8	3,7	96,3		< 0,01	< 0,05	< 0,05	< 0,05			< 0,05	< 0,05	< 1	0,06	< 25	

Tabella 4 – Risultati analisi campioni transetti oleodotto (* limite suggerito da ISS)

Parametro	residuo a 105°C	sottovaglio 2cm	sottovaglio 2mm	scheletro	benzene	etilbenzene	stirene	toluene	o-xilene	m,p-xilene	xilene	Sommatoria organici aromatici	idrocarburi C<=12	MtBE	idrocarburi C>12	foc
CSC TAB 1A	-	-	-	-	0,1	0,5	0,5	0,5	0,5	(*)	0,5	1	10	10 (*)	50	-
U.M.	%	%	%	g/Kg						mg/	Kg ss					g/Kg
C1 (2-3 m)	94,1	4,2	95,8		< 0,01	< 0,05	< 0,05	< 0,05			< 0,05	< 0,05	< 1	0,06	54,3	
C1 (3,8-4,5 m)	87,9	5,1	94,9		18,3	116	< 0,05	557			480	1153	4986	13,1	21533	
C2 (2-3 m)	83,4	3,6	96,4		< 0,01	< 0,05	< 0,05	< 0,05			< 0,05	< 0,05	< 1	< 0,01	29,9	
C2 (3,6-4 m)	83,9	6,1	94		11,8	121	< 0,05	462			546	1129	2019	27,8	1287	
C2 (4-5 m)	84,3	5,1	94,9		0,02	< 0,05	< 0,05	0,14			0,1	0,24	< 1	0,17	< 25	
C3 (2-3 m)	96,3	6	94,1		< 0,01	< 0,05	< 0,05	< 0,05			< 0,05	< 0,05	< 1	0,03	184	
C3 (3,6-4,4 m)	85,2	5,3	94,7		1	7,7	0,85	4,4			539	552	694	< 0,01	13693	

Parametro	residuo a 105°C	sottovaglio 2cm	sottovaglio 2mm	scheletro	benzene	etilbenzene	stirene	toluene	o-xilene	m,p-xilene	xilene	Sommatoria organici aromatici	idrocarburi C<=12	MtBE	idrocarburi C>12	foc
CSC TAB 1A	-	-	-	-	0,1	0,5	0,5	0,5	0,5	(*)	0,5	1	10	10 (*)	50	-
U.M.	%	%	%	g/Kg						mg/	Kg ss					g/Kg
C3 (4,5-5,0 m)	89,3	7,9	92,1		0,03	1,5	< 0,05	1			10,4	12,9	424	0,08	1591	
C4 (2,5-3,4 m)		3,9	96,1		0,3	97,3	< 0,05	301			411	809	1636	2,7	9166	
C4 (3,4-3,5 m)	85,5	3,4	96,7		< 0,01	< 0,05	< 0,05	< 0,05			< 0,05	< 0,05	< 1	< 0,01	110	
C5 (0-1 m)	83,5	5,2	94,8		< 0,01	< 0,05	< 0,05	< 0,05			< 0,05	< 0,05	< 1	0,05	< 25	
C5 (2,6-3,10 m)	87,4	4,4	95,6		3,8	11,8	< 0,05	50,7			67,8	130	1321	5,5	14371	
C6 (2,10-3,10 m)	86,1	5,6	94,4		< 0,01	< 0,05	< 0,05	< 0,05			< 0,05	< 0,05	< 1	0,13	< 25	
C7 (0-1 m)	83,3	4,1	95,9		< 0,01	< 0,05	< 0,05	< 0,05			< 0,05	< 0,05	< 1	0,06	< 25	
C7 (2,7-3,5 m)	85,2	6,6	93,5		12,5	387	5	1909			2081	4382	5535	10,1	4510	

Tabella 5 – Risultati analisi campioni sondaggi C1-C7 (* limite suggerito da ISS)

Tabella 5 – Ri	ella 5 – Risultati analisi campioni sondaggi C1-C7 (* limite suggerito da ISS)															
Parametro	residuo a 105 °C	sottovaglio 2cm	sottovaglio 2mm	scheletro	benzene	etilbenzene	stirene	toluene	o-xilene	m, p-xilene	xilene	Sommatoria organici aromatici	idrocarburi C<=12	MtBE	idrocarburi C>12	foc
CSC TAB 1A	-	-	-	-	0,1	0,5	0,5	0,5	0,5	(*)	0,5	1	10	10 (*)	50	-
U.M.	%	%	%	g/Kg					m _g	g/Kg ss						g/Kg
S1 (0-1mt)	82,5	100	99,8	1,81											8,51	1,14
S1 (0,5mt)	85,8	100	99,9	1	<0,0039	<0,0055	<0,0045	<0,0041	<0,0061	<0,012	<0,012	<0,012	<0,13	<0,025		
S1 (1,0-1,6mt)	88	100	99,9	0,611											137	
S1 (1,3mt)	84	100	99,9	1	<0,0044	<0,0062	<0,0051	<0,0046	<0,0069	<0,013	<0,013	<0,013	<0,15	<0,029		
S1 (1,6-2,6mt)	96	100	97,1	29,1											8,06	
S1 (1,6-2,6 mt) ARPA				27											< 20	
S1 (2,1mt)	89,7	100	99,9	1	<0,0045	<0,0064	<0,0052	<0,0047	<0,007	<0,013	<0,013	<0,013	<0,15	<0,029		
S2 (0-1mt)	81,9	100	99,9	1,4	,	,	,	,	,	,	,	,	,	,	346	
S2 (0,5mt)	81,9	100	99,9	1	<0,02	<0,028	<0,023	<0,021	<0,031	<0,058	<0,058	<0,058	<0,67	<0,13		
S2 (1,0-1,8mt)	80,3	100	99,7	2,85											200	
S2 (1,4mt)	91,6	100	99,9	1	<0,0042	<0,0059	<0,0048	<0,0044	<0,0065	<0,012	<0,012	<0,012	<0,14	<0,027		
S2 (1,8-2,8mt)	95	100	99	9,82											9,64	
S2 (2,3mt)	96	100	99,9	1	<0,0048	<0,0068	<0,0056	<0,0051	<0,0075	<0,014	<0,014	<0,014	<0,16	<0,031		
S3 (0-1mt)	82,9	100	99,9	1,43											165	
S3 (0,5mt)	85,5	100	99,9	1	<0,0041	<0,0058	<0,0047	<0,0043	<0,0063	<0,012	<0,012	<0,012	<0,14	<0,027		
S3 (1,6-2,6mt)	96	100	97,5	24,7											<3,8	
S3 (2,1mt)	97	100	99,9	1	<0,004	<0,0056	<0,0046	<0,0042	<0,0062	<0,012	<0,012	<0,012	<0,14	<0,026		
S3 (2,1mt) ARPA													< 1			
S4 (0-1mt)	91,2	100	99,9	1,24											10,3	
S4 (0,5mt)	91,5	100	99,9	1	<0,0046	<0,0065	<0,0053	<0,0049	<0,0072	<0,014	<0,014	<0,014	<0,16	<0,03		
S4 (1-1,8mt)	89,1	100	99,8	2,32											189	
S4 (1,4mt)	89,1	100	99,9	1	<0,003	<0,0043	<0,0035	<0,0032	<0,0047	<0,009	<0,009	<0,009	<0,1	<0,02		
S4 (1,8-2,8mt)	95	100	98,2	18,5											31,2	
S4 (2,3mt)	95	100	99,9	1	<0,0068	<0,0097	<0,0079	<0,0072	<0,011	<0,02	<0,02	<0,02	<0,23	<0,044		
S5 (0-1mt)	85,8	100	99,9	1,48											270	
S5 (0,5mt)	85,8	100	99,9	1	<0,0044	<0,0063	<0,0051	<0,0047	<0,0069	<0,013	<0,013	<0,013	<0,15	<0,029		
S5 (1,6-2,6mt)	96	100	97,6	23,7											88	
S5 (2,1mt)	96	100	99,9	1	<0,0029	<0,0041	<0,0033	<0,003	<0,0045	<0,0085	<0,0085	<0,0085	1,77	<0,019		
S6 (0-1mt) S6 (0-1mt)	87,7	100	99,8	1,7											9,64	1,16 0,002
ARPA				2									< 1		< 20	g/g
S6 (0,5mt)	87,6	100	99,9	1	<0,024	<0,033	<0,027	<0,025	<0,037	<0,07	<0,07	<0,07	<0,8	<0,15		
S6 (1,0-1,7mt)	81,9	100	99,7	2,55											<3,9	1,56
S6 (1,3mt)	80,1	100	99,9	1	<0,031	<0,044	<0,036	<0,033	<0,048	<0,092	<0,092	<0,092	<1,1	<0,2		
S6 (1,7-2,7mt)	93,1	100	99,7	2,54											8,44	
S6 (1,7-2,7 mt) ARPA				35,1											< 20	
S6 (2,2mt)	95	100	99,9	1	<0,0041	<0,0058	<0,0047	<0,0043	<0,0063	<0,012	<0,012	<0,012	<0,14	<0,027		
S7 (0-1mt)	79,6	100	99,8	1,74											4,2	
S7 (0,5mt)	83,8	100	99,9	1	<0,022	<0,031	<0,025	<0,023	<0,034	<0,065	<0,065	<0,065	<0,75	<0,14		
S7 (1,6-2,6mt)	94	100	99,4	5,84											44,5	
S7 (2,1mt)	94	100	99,9	1	<0,0032	0,031	<0,0038	<0,0034	0,36	0,35	0,71	0,74	16,4	<0,021		
S8 (0-1mt)	84,7	100	99,9	1,48											5,84	1,5

	1															
	105	glio	glio	o.	ЭС	ene	υ	e	e e	sue	a)	oria ci tici	ouri 2		ouri	
	residuo a 105 °C	sottovaglio 2cm	sottovaglio 2mm	scheletro	benzene	etilbenzene	stirene	toluene	o-xilene	m,p-xilene	xilene	Sommatoria organici aromatici	idrocarburi C<=12	MtBE	idrocarburi C>12	foc
Parametro	resi	sol	soi	SC	q	etil	o,	+	0	Ę		Sor o ar	idr		idr	
CSC TAB 1A	-	-	-	-	0,1	0,5	0,5	0,5	0,5	(*)	0,5	1	10	10 (*)	50	-
U.M.	%	%	%	g/Kg					mg	g/Kg ss						g/Kg
S8 (0,5mt)	83,2	100	99,9	1	<0,0041	<0,0058	<0,0047	<0,0043	<0,0063	<0,012	<0,012	<0,012	3,8	<0,026		
S8 (1,6-2,6mt)	96	100	96,2	37,7											12,6	
S8 (1,6-2,6mt) ARPA				67											< 20	
S8 (2,1mt)	96	100	99,9	1	<0,0036	<0,0051	<0,0041	<0,0038	<0,0056	<0,011	<0,011	<0,011	<0,12	<0,023		
S8 (2,1mt) ARPA											5,97		31			
S9 (0-1mt)	78,2	100	99,7	2,63											407	
S9 (0,5mt)	79,3	100	99,9	1	<0,0048	<0,0069	<0,0056	<0,0051	<0,0076	<0,014	<0,014	<0,014	<0,17	<0,032		
S9 (1,7-2,7mt) S9 (1,7-2,7mt)	94	100	97	30,2											87	
ARPA				62											< 20	
S9 (2,2mt) S9 (2,2mt)	95	100	99,9	1	<0,0047	<0,0067	<0,0055	<0,005	<0,0074	<0,014	<0,014	<0,014	<0,16	<0,031		
ARPA													< 1			
S10 (0-1mt) S10 (0-1mt)	85,5	100	99,7	2,79											192	
ARPA				42											67	
S10 (0,5mt)	90,7	100	99,9	1	<0,004	<0,0057	<0,0047	<0,0042	<0,0063	<0,012	<0,012	<0,012	0,53	<0,026	2520	
S10 (1,2-2,2mt) S10 (1,2-2,2 mt)	88,8	100	99,3	6,57											2530	
ARPA	0.7	400	00.0	26,1	-0.0035	2.4	-0.004	0.04	7.44	1.1	24.4	25.4	F20	10,022	3692	
S10 (2mt) S10 (2mt) ARPA	97	100	99,9	1	<0,0035	3,1 1,51	<0,004	0,84 5,56	7,44	14	21,4 11,82	25,4	520 166	<0,023		
S10 (2,2-3,1mt)	95	100	95	49,9	0,23	1,31		3,30			11,02		100		6800	
S10 (2,2-3,1mt) ARPA				126											9225	
S10 (2,9mt)	93,3	100	99,9	1	2,4	20,7	<0,0038	35	57	113	170	226	4270	<0,021		
S10 (2,9mt)					1,79	6,99	< 0,05	15,1			77,92	100,01	823	9		
ARPA S11 (0-1mt)	78,6	100	99,9	1,4											<3,9	
S11 (0,5mt)	79,5	100	99,9	1	<0,021	<0,03	<0,024	<0,022	<0,033	<0,062	<0,062	<0,062	<0,71	<0,14		
S11 (1-2mt)	93,8	100	98,6	14											1200	
S11 (1-2mt) ARPA				43											1207	
S11 (1,5mt)	96	100	99,9	1	<0,021	<0,029	<0,024	<0,022	<0,032	<0,062	<0,062	<0,062	12,2	<0,14		
S11 (2-3mt) S11 (2-3mt)	95	100	95,7	42,5											1440	
ARPA				75											2529	
S11 (2,5mt) S11 (2,5mt)	92,6	100	99,9	1	<0,0043	0,194	<0,0051	<0,0046	1,7	2,15	3,9	4	167	<0,028		
ARPA					< 0,05	< 0,05	< 0,05	< 0,05			< 0,15	< 0,15	1	< 1		
S12 (0-1mt) S12 (0,5mt)	82,3 81,3	100	99,8 99,9	1,67 1	<0,0047	<0,0066	<0,0054	<0,0049	<0,0073	<0,014	<0,014	<0,014	<0,16	<0,03	4,32	
S12 (0,5mt)	93,7	100	99,9	23,2	-0,004/	-0,0000	-0,0034	·0,0043	-0,0073	10,014	10,014	~0,014	\J,10	-0,03	5,54	
S12 (2,1mt)	84,1	100	99,9	1	<0,0052	<0,0074	<0,0061	<0,0055	<0,0081	<0,016	<0,016	<0,016	<0,18	<0,034		
S13 (0-1mt)	86,6	100	99,6	3,82											16,9	
S13 (0,5mt) S13 (0,5mt)	88,3	100	99,9	1	<0,0043	<0,0061	<0,005	<0,0046	<0,0067	<0,013	<0,013	<0,013	<0,15	<0,028		
ARPA		15.5											< 1			
S13 (1,0-1,6mt) S13 (1,3mt)	78,5 83,3	100	99,7 99,9	3,03	<0,0043	<0,0062	<0,005	<0,0046	<0,0068	<0,013	<0,013	<0,013	<0,15	<0,028	5,07	1,8
S13 (1,3mt) S13 (1,6-2,6mt)	75	100	99,9	69,6	NO,0043	\U,UU0Z	\U,UU3	\0,004b	\U,UU08	\U,U13	\U,U13	\U,U13	\U,15	\U,UZ8	26,4	
S13 (1,6-2,6mt)																<
ARPA				46,5											< 20	0,001 g/g
S13 (2,1mt)	95	100	99,9	1	<0,005	<0,007	<0,0058	<0,0052	<0,0077	<0,015	<0,015	<0,015	<0,17	<0,032		
S13 (2,1mt) ARPA													< 1			
S14 (2,2-3,2mt)	85	100	98,4	15,9											<3,8	1,45
S14 (2,7mt)	80,4	100	99,2	8,34	<0,0045	<0,0064	<0,0052	<0,0047	<0,007	<0,013			<0,15	<0,029	-2.0	1.00
S15 (1,7-2,7mt) S15 (2,2mt)	95 96	100	97,6 99,9	23,7	<0,023	<0,032	<0,026	<0,024	<0,035	<0,068	<0,068	<0,068	<0,78	<0,15	<3,8	1,06
S16 (1,8-2,8mt)	96	100	96,5	34,7	.5,525	.5,052	.5,520	.5,024	.5,055	.5,500	.5,555	.5,000	.5,70	.0,10	<3,8	
S16 (1,8-2,8 mt)				88											< 20	
ARPA S16 (2,3mt)	95	100	99,9	1	<0,0041	<0,0059	<0,0048	<0,0044	<0,0065	<0,012	<0,012	<0,012	<0,14	<0,027		
			, -		-,0011	-,000		1 -,551-	-,000	-,	-,	-,	~, <u>-</u> ⊤	3,027		

CSC TAB 1A - - - - 0,1 0,5 0,5 0,5 0,5 0,5 1 10 10 (*) 50 - U.M. % % g/Kg g/Kg -		105	glio	glio	2	je Je	ene	a)	υ	a	ine	4)	oria ci ici	uri		uri	
Control Cont		residuo a 105 °C	sottovaglio 2cm	sottovaglio 2mm	scheletro	benzene	etilbenzene	stirene	toluene	o-xilene	m,p-xilene	xilene	Sommatoria organici aromatici	idrocarburi C<=12	MtBE	idrocarburi C>12	foc
Mathematical Region Mathematical Region						0.1	0.5	0.5	0.5	0.5	/*\	0.5	1	10	10 (*)	F0	
		-	-			0,1	0,5	0,5	0,5			0,5	1	10	10 (*)	30	-
Stroll S			%							mg	g/Kg ss						g/Kg
Sigli_1,-2,-2,-7mg 92 100 98.8 1,74 9.0mg 10mg 9.0mg 1.0mg 9.0mg 9.0mg 1.0mg 9.0mg		92,7	100	98,2	18											<3,8	
SAB (1-2-7) mile (1-2-7) S. 10 mile (1-2-7) 1.0 mile (1-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2						<0,0042	<0,0059	<0,0048	<0,0044	<0,0065	<0,012	<0,012	<0,012	<0,14	<0,027		
Marcha No		92	100	99,8	1,74											<3,9	1,05
Sig [2,2mm] 88 100 99,9 1 0,003 0,003 0,002 0,003 0,0					19,5											< 20	
ARPA 9 9 9 9 10 9 10 9 10 9 10 9 10 9 10 9 1 0 9 1 0 9 1 0 9 0 0 9 9 1 0 0 9 0 0 9 1 0		88	100	99,9	1	<0,023	<0,033	<0,027	<0,025	<0,037	<0,069	<0,069	<0,069	<0,8	<0,15		
Sig1(3.4-2.4mt) 9.0 9.04 9.0														< 1			
S20 (-1 mt) 3.9 1.0 9.9 1.3 9.0 1.0 1.0 9.0 9.0 <th< th=""><th></th><th>90,3</th><th>100</th><th>99,6</th><th>4,22</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>68</th><th></th></th<>		90,3	100	99,6	4,22											68	
SSQ(), 5 mm) 86,7 100 94,8 52,2 0,0004 0,0009 0,0004 0,0004 0,0014 0,010 0,0009 0,0009 0,0009 0,0004 0,0004 0,0014 0,0014 0,0009	S19 (2,3mt)	94	100	99,9	1	<0,0047	<0,0066	<0,0054	<0,0049	<0,0073	<0,014	<0,014	<0,014	<0,16	<0,03		
S20 (1.8-2.8 mt) 95 100 97,6 230 100 97,0 100 100 100 100 100 100 100 100 200	S20 (0-1 mt)	83,9	100	99,9	1,13											<3,5	
S20(1.8-2.8 mt) ARPA Umake 1 make 1 mak	S20 (0,5 mt)	86,7	100	94,8	52,2	<0,00041	<0,00051	<0,00038	0,000972	<0,0004	<0,0014	<0,0014	<0,0014	<0,11	<0,00038		
ARPA 1.0 1.0 94,6 1.15 94,0 1.0 94,6 54,5 24,00048 20,00048		95	100	97,6	23,9											<3,4	
S20(2,3 mt) ARPA W Image: Mark ARPA Image: Mark ARPA <t< th=""><th></th><th></th><th></th><th></th><th>115</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>< 20</th><th></th></t<>					115											< 20	
ARPA 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 2 1 2 1 3 1 2 1 3 1 2 1 2 2 1 2 1 2 2 1 2 1 2	S20 (2,3 mt)	93,4	100	94,6	54,5	<0,00046	<0,00058	<0,00043	0,000938	<0,00046	<0,0016	<0,0016	<0,0016	<0,12	<0,00042		
S20 (3,5 mt) 94,5 100 93,5 64,6 <0,00037														< 1			
S21 (0-1 mt) 83,2 100 99,8 1,93 1.93	S20 (3-4 mt)	92,3	100	95,9	41,3											<3,4	
S21 (0-1 mt) ARPA R R 13.6 IBM	S20 (3,5 mt)	94,5	100	93,5	64,6	<0,00037	<0,00046	<0,00034	0,000594	<0,00036	<0,0013	<0,0013	<0,0013	<0,099	<0,00034		
ARPA 5 10 92,3 76,5 0,00043 0,00053 0,0004 0,000874 0,00042 0,0015 0,0015 0,012 0,00039 1 \$21 (0,5 mt) ARPA \$ 10 92,3 76,5 0,00043 0,005 0,005 0,005 0,0004 0,000874 0,00042 0,0015 0,0015 0,012 0,00039 1 0 \$21 (1-2 mt) 88,6 100 99,7 3,22 100 0,00042 0,00052 0,00039 0,00071 0,00041 0,0015 0,015		83,2	100	99,8	1,93											14,6	
S21 (0,5 mt) ARPA Image: Control of the c					13,6											< 20	
ARPA 88,6 100 99,7 3,22 100 20,005 20,005 20,0039 20,0039 20,0039 20,0031 20,00041 20,00041 20,0015 20,0015 20,0015 20,0015 20,0015 20,00039 20,00039 20,000714 20,00041 20,0015		85,1	100	92,3	76,5	<0,00043	<0,00053	<0,0004	0,000874	<0,00042	<0,0015	<0,0015	<0,0015	<0,12	<0,00039		
S21 (1,5 mt) 85,7 100 90 100 <0,00042						< 0,05	< 0,05	< 0,05	< 0,05			< 0,15	< 0,15	<0,12			
S21 (2-3 mt) 88,2 100 99,8 2,44 example of the control of the c	S21 (1-2 mt)	88,6	100	99,7	3,22											<3,5	
S21 (2,5 mt) 95,4 100 88,5 115 <0,00038	S21 (1,5 mt)	85,7	100	90	100	<0,00042	<0,00052	<0,00039	0,000714	<0,00041	<0,0015	<0,0015	<0,0015	<0,11	<0,00039		
S22 (0-1 mt) ARPA 87,4 100 99,8 2,11 s	S21 (2-3 mt)	88,2	100	99,8	2,44											<3,5	
S22 (0-1 mt) ARPA Long S22 (0-1 mt)	S21 (2,5 mt)	95,4	100	88,5	115	<0,00038	<0,00048	<0,00036	0,000879	<0,00038	<0,0013	<0,0013	<0,0013	<0,10	<0,00035		
ARPA See See See See See See See See See Se		87,4	100	99,8	2,11											14,2	
S22 (1-2,5 mt) 92,3 100 97,8 22,2					24,7											< 20	
	S22 (0,5 mt)	86,1	100	94,9	51,4	<0,00034	<0,00042	<0,00032	0,000912	<0,00034	<0,0012	<0,0012	<0,0012	<0,092	<0,00031		
S22 (2,0 mt) 92,9 100 93,8 62,4 <0,00035 <0,00044 <0,00033 0,00072 <0,00035 <0,0012 <0,0012 <0,0012 <0,0012 <0,0012 <0,0003 <0,00033	S22 (1-2,5 mt)	92,3	100	97,8	22,2											<3,4	
	S22 (2,0 mt)	92,9	100	93,8	62,4	<0,00035	<0,00044	<0,00033	0,00072	<0,00035	<0,0012	<0,0012	<0,0012	<0,096	<0,00033		

Tabella 6 – Risultati indagini caratterizzazione sondaggi S1-S22 (* limite suggerito da ISS)

Nel complesso, i dati mostrano che la contaminazione nel terreno insaturo risulta interessare solo l'area attorno alla "manomissione n. 1" mentre, per quanto attiene la manomissione n. 2, i campioni sottoposti ad analisi nell'ambito delle diverse fasi di indagine condotta, sono risultati tutti conformi.

Anche per quanto attiene il confronto con i dati ARPA si conferma la situazione descritta in precedenza; dal punto di vista numerico e relativamente al confronto con le CSC i dati dei due laboratori conducono, nella maggior parte dei casi, ad uno stesso giudizio di conformità.

2.2 ACQUE SOTTERRANEE

La qualità delle acque sotterranee è oggetto di monitoraggio periodico a partire dal maggio 2017, periodo in corrispondenza del quale sono stati realizzati i piezometri PZ1, PZ2, PZ3, PZ4 e PZ5, previsti nell'ambito delle indagini di cui al piano della caratterizzazione; la rete di monitoraggio è stata recentemente ampliata con la realizzazione dei piezometri PZ6, PZ7, PZ8, PZ9.

In occasione di ogni campagna di monitoraggio e con cadenza bisettimanale, a partire dall'avvio delle attività di Pump & Stock vengono eseguiti rilievi delle soggiacenze della falda presso i piezometri al fine di valutare l'andamento della piezometria locale, oltre che per valutare l'entità delle oscillazioni della quota di falda e la relativa stagionalità.

2.2.1 ANDAMENTO LIVELLI DI FALDA E PIEZOMETRIA

I dati piezometrici rilevati a tutto il 31/1/2019 sono stati elaborati al fine di produrre il seguente grafico.

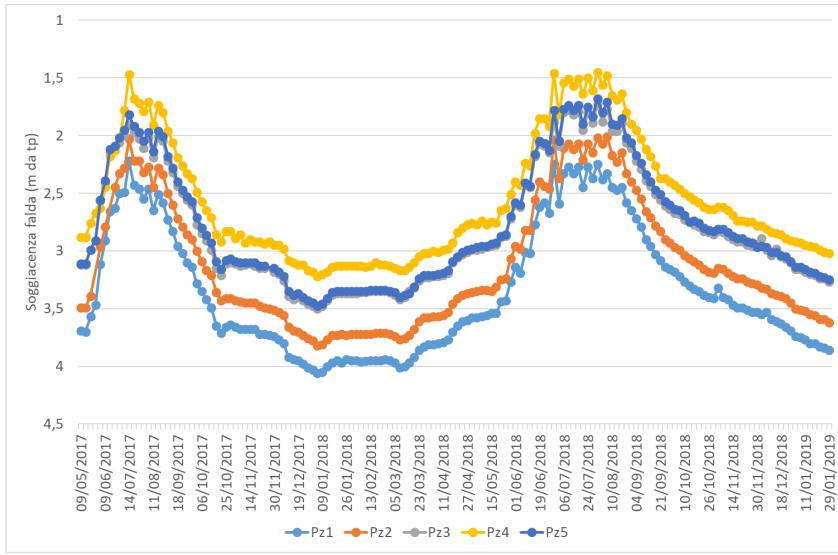
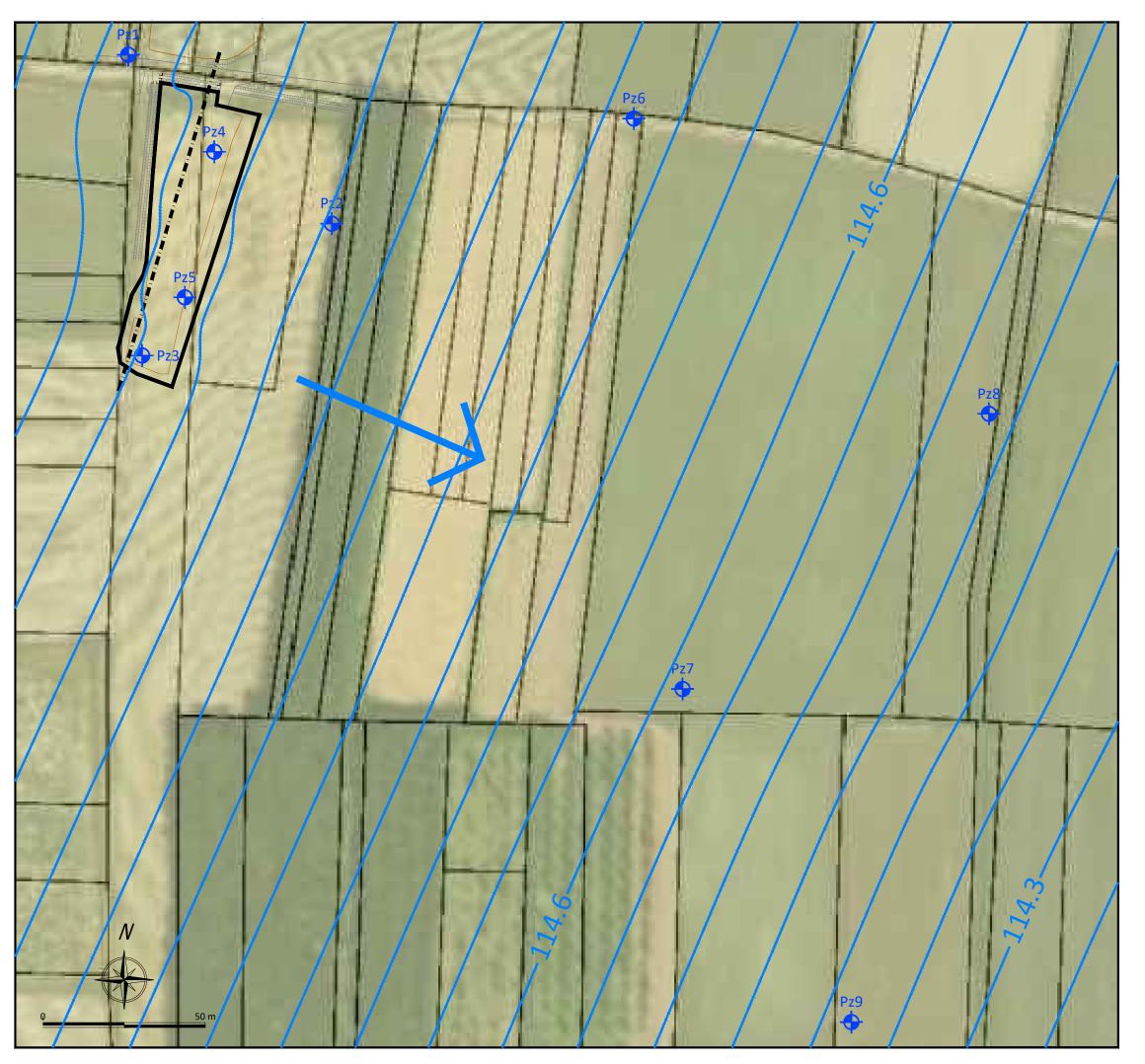
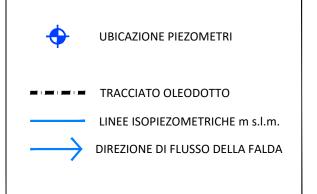


Figura 1 – Andamento soggiacenze falda piezometri interni

I dati mostrano un andamento dei livelli di falda strettamente correlato con la stagionalità delle pratiche irrigue: le massime soggiacenze sono rilevate nei periodi invernali – tardo invernali, con valori variabili, a seconda del punto di misura, tra circa -3,3 e -4,1 mt da t.p. mentre, le minime soggiacenze si rilevano nel periodo tardo primaverile – estivo, con valori compresi tra circa -1,4 e -2,2 mt da t.p.; l'escursione stagionale della falda può quindi essere quantificata in circa 2 mt.


I dati rilevati sono stati elaborati al fine di valutare la piezometria dell'area; il programma di calcolo utilizzato per le elaborazioni ha permesso di verificare che la piezometria, rappresentata in Tavola 3 risulta stabilmente orientata WNW verso ESE, con gradiente pari a circa 0,003.


2.2.2 RISULTATI ANALISI

I risultati delle analisi relativi alle attività di monitoraggio condotte in contraddittorio con ARPA, sono stati puntualmente resi disponibili mediante precedenti invii; oltre alle campagne in contraddittorio con ARPA sono state svolte alcune ulteriori campagne di monitoraggio nell'ambito delle attività di Pump & Stock in corso di esecuzione.

Di seguito si riporta un riepilogo delle campagne complessivamente condotte, con riferimento all'oggetto e all'eventuale contraddittorio condotto:

- 22/5/17: campagna completa in contraddittorio con ARPA;
- 7/7/17: monitoraggio PZ2 e PZ4;
- 21/7/17: monitoraggio PZ2 e PZ4;
- 4/9/17: campagna completa in contraddittorio con ARPA;
- 12/10/17: monitoraggio PZ2 e PZ4;
- 9/11/17: monitoraggio PZ2 e PZ4;
- 5/12/17: campagna completa in contraddittorio con ARPA;
- 11/1/18: monitoraggio PZ2 e PZ4;
- 15/2/18: monitoraggio PZ2 e PZ4;
- 20/3/18: monitoraggio PZ2 e PZ4;
- 17/4/18: campagna completa in contraddittorio con ARPA;
- 19/6/18: monitoraggio PZ2 e PZ4;
- 31/7/18: campagna completa;
- 28/8/18: monitoraggio PZ2 e PZ4;
- 25/9/18: monitoraggio PZ2 e PZ4;

Committente:

SARPOM

- Raffineria di Trecate -

Titolo: Contaminazione area Oleodotto SARPOM DN 8" Trecate Savona Vado Ligure in Comune di Gravellona Lomellina - Loc. Salto Crocetta

ANALISI DI RISCHIO

D. Lgs. 152/06 B16/020/04

UBICAZIONE PIEZOMETRI E PIEZOMETRIA

Scala: Data: Tav n.: 3 Aprile 2019 Grafica Emesso: Verificato: Approvato: L.Quarto M.Magri M.Carmine

Descrizione:

TECNOLOGIE DI BONIFICA E MONITORAGGIO
Sede Operativa: Via Segrino, 6 - 20098 Sesto Ult. di S. Giuliano Mil.se (MI) Tel. 02/9880762 Fax 02/98281628
Uffici di Progettazione: Corte degli Arrotini, 1 - 28100 NOVARA Tel. 0321/499488 Fax 0321/520037

- 23/10/18: campagna completa;
- 20/11/18: monitoraggio PZ2, PZ4;
- 18/12/18: monitoraggio PZ2 e PZ4;
- 25/1/19: campagna completa comprensiva dei nuovi piezometri PZ6÷PZ9.

Riguardo alle campagne eseguite per conto del Committente che non sono state oggetto di contraddittorio si riportano in allegato 1÷15 i rapporti di prova mentre, di seguito, si riporta una tabella riepilogativa dei risultati sin qui acquisiti per i piezometri PZ2 e PZ4, oltre ai piezometri di valle, di nuova realizzazione, PZ6÷PZ9; per quanto riguarda il piezometro PZ1 (monte) e i piezometri di valle interni rispetto alla manomissione 2, PZ3 e PZ5, i risultati delle varie campagne condotte mostrano la piena conformità dei campioni prelevati e sottoposti ad analisi.

	CSC TAB 2		22/05/2017				04/09/2017				05/12/2017		
PZ4-zona manomissione 1	(ug/L)	22/05/2017	ARPA	07/07/2017	21/07/2017	04/09/2017	ARPA	12/10/2017	09/11/2017	05/12/2017	ARPA	11/01/2018	15/02/2018
Soggiacenza	1	3,06		2,02	1,72	1,8		2,71	2,91	2,95		3,18	3,1
benzene	1	1110	1205	1010	331	430	1614	1610	3380	1080	3215	4120	820
etilbenzene	50	319	147	283	8,74	119	538	555	2770	437	822	11600	607
stirene	25	<2,1	321	<0,83	<2,1	<1,4	<1	< 1,8	<1,8	< 2,1		<1,8	<5,5
toluene	15	6240	5196	8360	932	5480	9396	7870	36900	6430	18420	25800	6490
o-xilene	10*	399	< 0,25	1430	405	220	1692	777	5300	514		6450	1050
m,p-xilene	10	1130	1476	2680	937	547	2695	2090	12900	1800	3600	17800	2310
metil t-butil etere (MTBE)	40*	683	1007	15,1	264	73	288	422	183	53	1850	92	76
idrocarburi totali come esano	350	<2500,0	9348	32800	9160	14800	16720	32300	766000	25300	25935	399000	108000
idrocarburi C5-C10 come n-esano	-	<2500,0	8884	32300	9070	14400		32200	360000	23200		73700	39500
idrocarburi C10-C40 come n-esano	-	437	464	499	86,6	338		105	406000	2150		325000	68200

Tabella 7 – Storico risultati monitoraggio piezometro PZ4 (22/5/17-15/2/18)

	CSC TAB 2			17/04/2018								
PZ4-zona manomissione 1	(ug/L)	20/03/2018	17/04/2018	ARPA	19/06/2018	31/07/2018	28/08/2018	25/09/2018	23/10/2018	20/11/2018	18/12/2018	25/01/2019
Soggiacenza	-	3,1	2,94		1,85	1,45	1,8	2,37	2,62	2,74	2,86	3,01
benzene	1	1770	2010		1250	2320	2590	1570	1230	1730	1510	1720
etilbenzene	50	1630	2070		356	590	487	849	1350	526	669	1660
stirene	25	< 1,4	<1,4		<0,70	<0,70	<0,022	<1,4	<1,2	<1,2	<1,3	<1,2
toluene	15	13800	20000		6090	10100	12000	12000	6590	8870	9490	10300
o-xilene	10*	2430	3610		480	1110	889	1350	1130	875	1180	1300
m,p-xilene	10	6460	9410		1180	2510	2720	3560	2880	2090	3120	3610
metil t-butil etere (MTBE)	40*	61	65		48	86	85	25,2	<1,2	<1,2	<1,8	<1,2
idrocarburi totali come esano	350	106000	201000		11500	39900	46300	48700	23500	21900	36100	211000
idrocarburi C5-C10 come n-esano	-	34000	38600		11300	39400	45700	48400	23300	21400	25500	29400
idrocarburi C10-C40 come n-esano	-	72300	162000		193	503	541	280	287	455	10600	181000

Tabella 8 – Storico risultati monitoraggio piezometro PZ4 (20/3/18-25/1/19)

	CSC TAB 2		22/05/2017				04/09/2017				05/12/2017		
PZ2-valle interno	(ug/L)	22/05/2017	ARPA	07/07/2017	21/07/2017	04/09/2017	ARPA	12/10/2017	09/11/2017	05/12/2017	ARPA	11/01/2018	15/02/2018
Soggiacenza	-	3,39		2,33	2,22	2,34		3,21	3,45	3,53		3,77	3,71
benzene	1	254	322	1740	2020	479	587	4490	3300	3010	1070	2080	1270
etilbenzene	50	6,5	0,32	208	148	144	153	884	766	1470	408	2560	312
stirene	25	<0,83	122	<0,83	<2,1	< 2,7	<1	< 1,8	<0,35	< 8,3		<0,35	<5,5
toluene	15	215	386	10100	11400	2510	3311	24900	23300	17100	6325	9880	6840
o-xilene	10*	233	< 0,25	1810	1190	250	409	1760	1880	1970		1510	666
m,p-xilene	10	439	441	3170	2700	553	883	5300	4180	4070	1785	3860	1360
metil t-butil etere (MTBE)	40*	1100	1171	1540	1310	717	931	1810	1230	2000	38	521	214
idrocarburi totali come esano	350	<990,0	< 50	44300	34600	15400	6283	72100	96500	56000	14977	34400	34900
idrocarburi C5-C10 come n-esano	-	<990,0	< 50	44200	34000	15000		71000	95800	54800		34200	34600
idrocarburi C10-C40 come n-esano	-	69,1	< 50	124	589	364		1110	664	1200		247	251

Tabella 9 – Storico risultati monitoraggio piezometro PZ2 (22/5/17-15/2/18)

	CSC TAB 2			17/04/2018								
PZ2-valle interno	(ug/L)	20/03/2018	17/04/2018	ARPA	19/06/2018	31/07/2018	28/08/2018	25/09/2018	23/10/2018	20/11/2018	18/12/2018	25/01/2019
Soggiacenza	-	3,68	3,46		2,4	2,02	2,33	2,9	3,16	3,24	3,39	3,59
benzene	1	926	2500	742	1290	309	461	1050	2850	2350	2300	1630
etilbenzene	50	220	3180	196	522	119	95	266	777	1210	706	960
stirene	25	< 1,4	<27		<0,70	<0,18	<0,022	<1,4	<1,2	<1,2	<1,3	<1,2
toluene	15	5190	32600	4847	9420	1720	2070	4720	15300	17100	15700	9800
o-xilene	10*	498	5840		1140	246	163	737	1280	1070	1670	1050
m,p-xilene	10	2550	18900	1128	2400	537	451	1600	2740	2600	3910	2470
metil t-butil etere (MTBE)	40*	31,6	<40	17,6	20,8	14,5	202	312	118	26,3	<1,8	<1,2
idrocarburi totali come esano	350	9520	84200	6075	17500	7470	7390	20300	48100	36100	40500	24700
idrocarburi C5-C10 come n-esano	-	9400	84200		17200	7280	7140	19500	47200	35500	40000	24400
idrocarburi C10-C40 come n-esano	-	117	43,6		319	194	256	752	893	613	553	248

Tabella 10 – Storico risultati monitoraggio piezometro PZ2 (20/3/18-25/1/19)

	CSC TAB 2				
Parametri	(ug/L)	PZ6	PZ7	PZ8	PZ9
Soggiacenza	-	2,3	2,26	2,3	3,1
benzene	1	0,0194	<0,014	512	0,0169
etilbenzene	50	<0,045	<0,045	0,836	<0,045
stirene	25	<0,012	<0,012	<0,12	<0,012
toluene	15	0,156	0,141	0,91	0,173
o-xilene	10*	0,0413	0,038	1,08	0,0429
m,p-xilene	10	0,0982	0,0949	3,7	0,112
metil t-butil etere (MTBE)	40*	<0,012	<0,012	51	<0,012
idrocarburi totali come esano	350	<35	32,5	1750	<35
idrocarburi C5-C10 come n-esano	-	<23	<23	1540	<23
idrocarburi C10-C40 come n-esano	-	<35	32,5	211	<35

Tabella 11 – Risultati monitoraggio 25/1/19 piezometri valle sito

I dati in tabella mostrano come i soli piezometri interni al sito caratterizzati da contaminazione siano PZ4, in prossimità della zona in cui è stata rilevata la "manomissione n.1" e il suo corrispettivo di valle PZ2.

Per quanto attiene i presidi di valle sito di recente realizzazione, si rileva contaminazione nel piezometro PZ8 mentre, per quanto attiene i piezometri PZ6, PZ7, PZ9, si rileva una situazione di conformità.

Per quanto attiene il giudizio di conformità rispetto alle CSC, relativamente alle campagne condotte il contraddittorio, il confronto tra i dati del laboratorio di parte e del laboratorio ARPA conferma quanto sopra riportato.

3. MODELLO CONCETTUALE DEFINITIVO

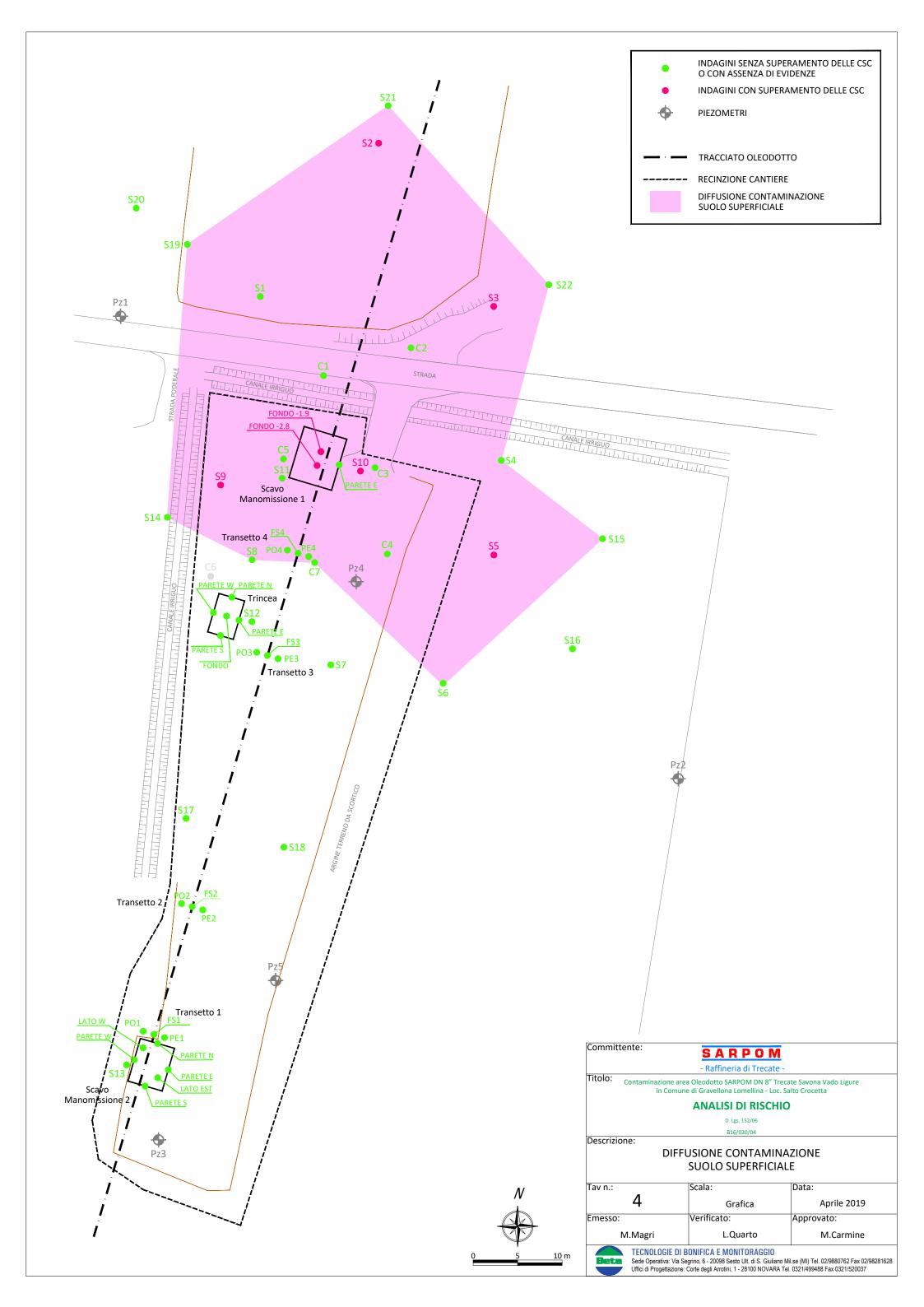
Sulla base delle risultanze delle indagini sinteticamente descritte nei capitoli precedenti, di seguito si illustra il MCD del sito in esame, così come previsto dal D.Lgs. 152/06 e dalle Linee Guida ex APAT.

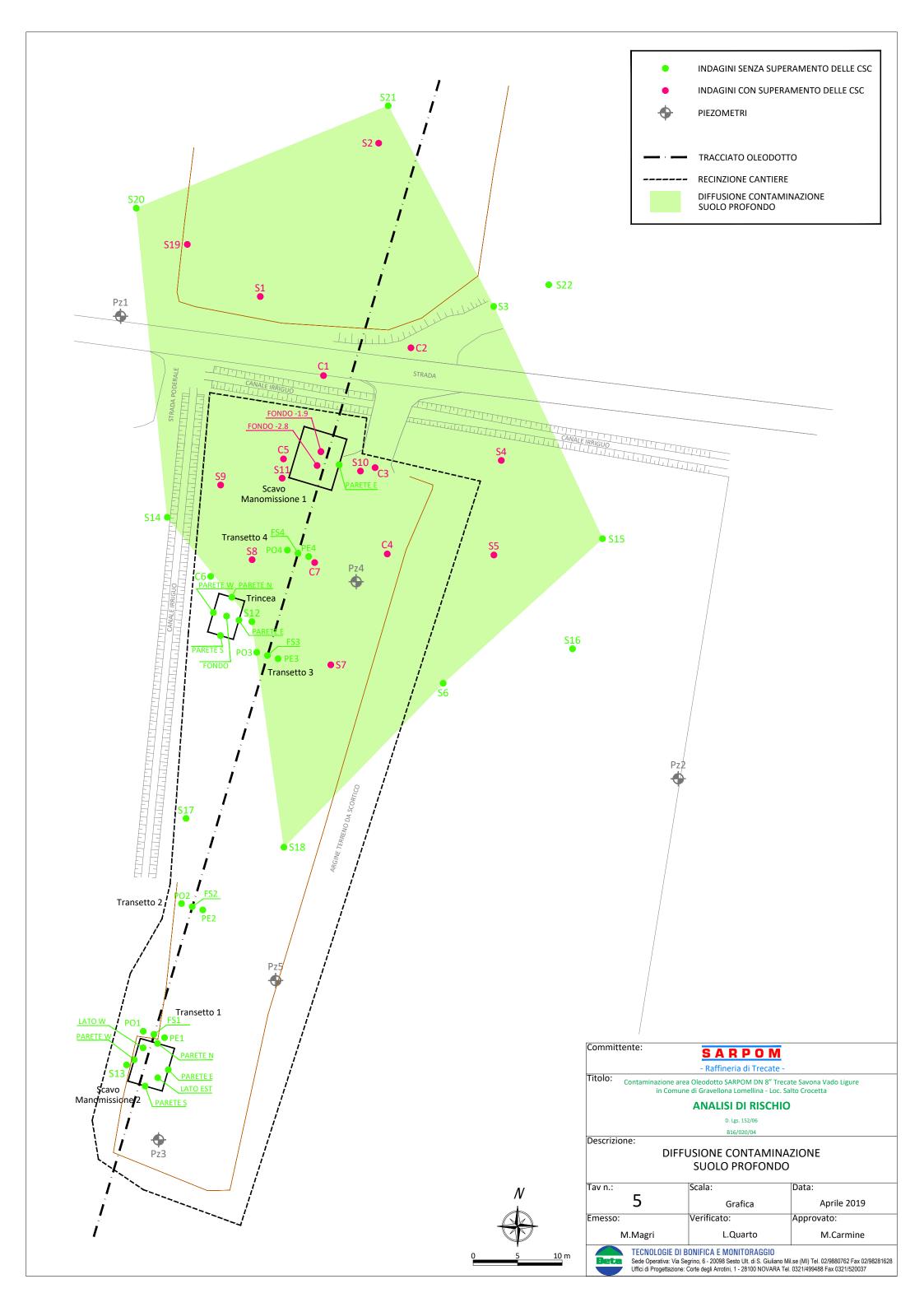
3.1 SORGENTI DI CONTAMINAZIONE

3.1.1 SUOLO SUPERFICIALE

Con riferimento ai risultati delle indagini precedentemente illustrati, la contaminazione rilevata nel suolo superficiale risulta limitata a 6 soli punti di indagine (§ Tavola 4); come mostrato nelle sezioni in Tavola 2, la quota di posa della tubazione è posta a circa 1,3/1,7 mt da piano campagna (a seconda della presenza o meno della coltre di terreno agrario), ben al di sotto quindi del suolo superficiale.

La contaminazione rilevata nel terreno superficiale è caratterizzata dalla sola presenza di Idrocarburi C>12, unico parametro rilevato con concentrazione eccedente la CSC; la perimetrazione proposta in Tavola 4, ricavata attraverso applicazione dei criteri di conservatività previsti dalle Linee Guida ex APAT, prevede di considerare la sorgente estesa sino al primo punto esente da contaminazione.


Per i campioni in relazione ai quali sono state svolte analisi da parte di ARPA oltre a quelle eseguite dal laboratorio di parte, è stato considerato il risultato maggiormente cautelativo.


3.1.2 SUOLO PROFONDO

La contaminazione rilevata nel suolo profondo risulta interessare 17 punti di indagine (§ Tavola 5), insistendo, secondo le modalità di perimetrazione di cui alle Linee Guida ex APAT, su una superficie più estesa rispetto a quella delimitata per la sorgente in suolo superficiale; le indagini hanno altresì permesso di rilevare un'estensione verticale della sorgente sino alla frangia capillare.

I contaminanti rilevati in suolo profondo sono:

- Idrocarburi C<12;
- Idrocarburi C>12;
- Composti Organici Aromatici (Benzene, Etilbenzene, Stirene, Toluene, Xileni);

MtBE.

Come per il suolo superficiale, la perimetrazione proposta in Tavola 5 considera la sorgente estesa sino al primo punto esente da contaminazione; per i campioni in relazione ai quali sono state svolte analisi da parte di ARPA oltre a quelle eseguite dal laboratorio di parte, è stato considerato il risultato maggiormente cautelativo.

3.1.3 ACQUE SOTTERRANEE

I contaminanti rilevati sono di seguito elencati:

- Composti Organici Aromatici (Benzene, Etilbenzene, Toluene, Stirene, o-Xilene, mp-Xilene);
- MtBE;
- Idrocarburi totali come n-Esano.

Sono state proposte due perimetrazioni:

- Una perimetrazione al confine del sito (PZ2), per la verifica dei rischi di superamento al POC delle CSC, che delimita la sorgente tra i piezometri PZ1, PZ5, PZ2, di seguito sorgente on site, rappresentata in Tavola 6;
- Una perimetrazione estesa oltre il piezometro di valle sito PZ8, per la stima del rischio da inalazione vapori, di seguito sorgente off site, rappresentata in Tavola 7.

La perimetrazione estesa proposta è basata sui seguenti criteri:

- Il limite N considerato è definito tra i piezometri PZ1 e PZ6, risultati esenti da contaminazione e, verso valle, dalla linea di flusso delle acque sotterranee;
- Il limite S considerato sono i piezometri PZ5 e PZ7, risultati esenti da contaminazione e, verso valle, dalla linea di flusso delle acque sotterranee;

Il limite E è posto a valle del piezometro PZ8, che presenta superamenti delle CSC, considerando la sorgente estesa sino a 750 mt dal confine del sito (PZ2); tale distanza è stata ricavata, ai fini del presente studio, consultando la funzione del software "Trasporto off site", attraverso una elaborazione condotta ad hoc (E0), sviluppata con gli stessi dati di input delle elaborazioni condotte per l'analisi di rischio.

PIEZOMETRI CON SUPERAMENTO DELLE CSC

PIEZOMETRI SENZA SUPERAMENTO DELLE CSC

TRACCIATO OLEODOTTO

DIREZIONE DI FLUSSO DELLA FALDA

DIFFUSIONE CONTAMINAZIONE FALDA ON-SITE

Committente:

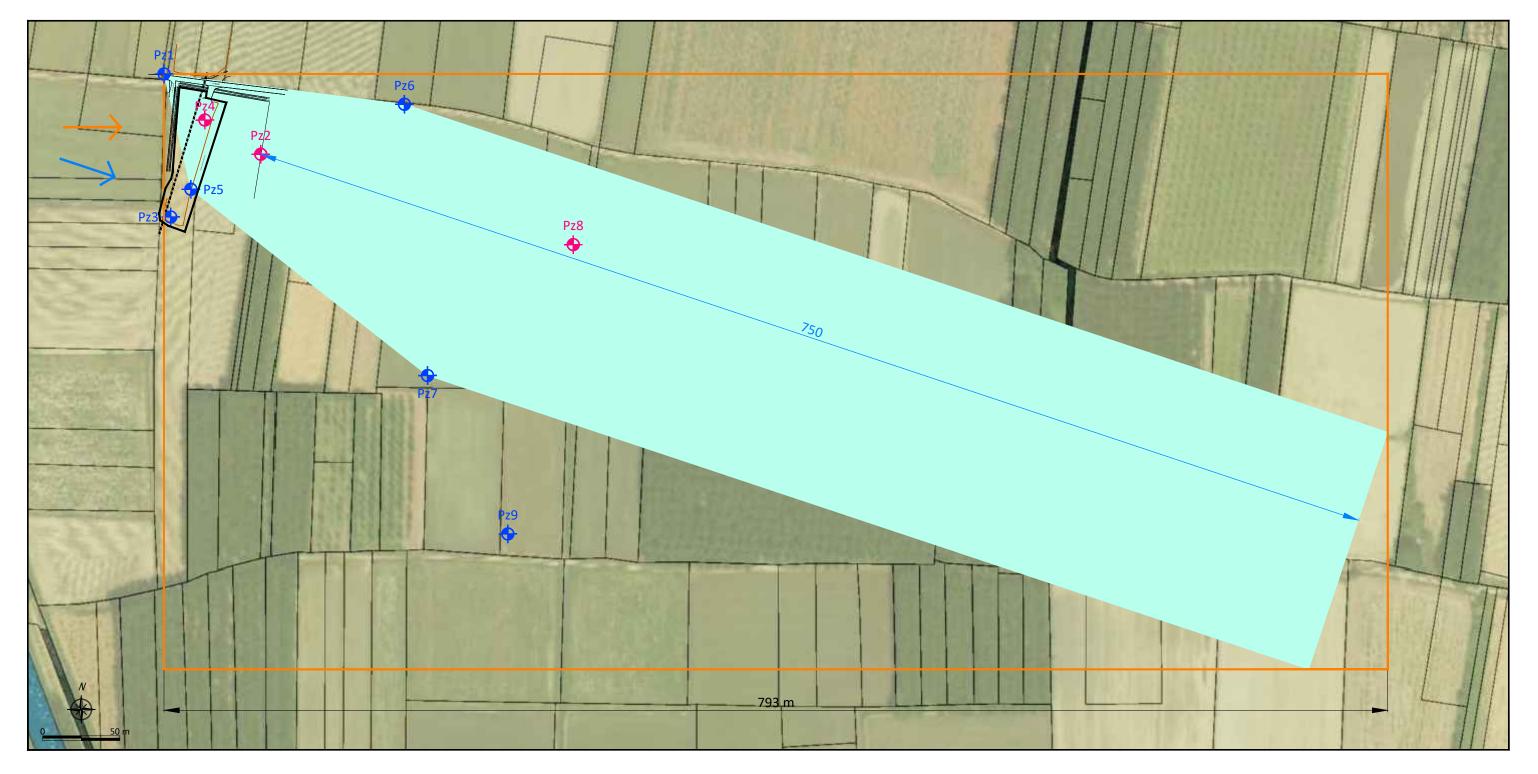
SARPOM

- Raffineria di Trecate -

Titolo: Contaminazione area Oleodotto SARPOM DN 8" Trecate Savona Vado Ligure in Comune di Gravellona Lomellina - Loc. Salto Crocetta

ANALISI DI RISCHIO

B16/020/04


Descrizione:

DIFFUSIONE ED ESTENSIONE **CONTAMINAZIONE FALDA ON-SITE**

Tav n.:	Scala:	Data:		
6	Grafica	Aprile 2019		
Emesso:	Verificato:	Approvato:		
M.Magri	L.Quarto	M.Carmine		

TECNOLOGIE DI BONIFICA E MONITORAGGIO
Sede Operativa: Via Segrino, 6 - 20098 Sesto Ult. di S. Giuliano Mil.se (MI) Tel. 02/9880762 Fax 02/98281628
Uffici di Progettazione: Corte degli Arrotini, 1 - 28100 NOVARA Tel. 0321/499488 Fax 0321/520037

- Raffineria di Trecate -

Titolo: Contaminazione area Oleodotto SARPOM DN 8" Trecate Savona Vado Ligure in Comune di Gravellona Lomellina - Loc. Salto Crocetta

ANALISI DI RISCHIO

D. Lgs. 152/06 B16/020/04

Descrizione:

DIFFUSIONE ED ESTENSIONE CONTAMINAZIONE FALDA OFF-SITE

Tav n.:	Scala:	Data:
7	Grafica	Aprile 2019
Emesso:	Verificato:	Approvato:
M.Magri	L.Quarto	M.Carmine

TECNOLOGIE DI BONIFICA E MONITORAGGIO
Sede Operativa: Via Segrino, 6 - 20098 Sesto Ult. di S. Giuliano Mil.se (MI) Tel. 02/9880762 Fax 02/98281628
Uffici di Progettazione: Corte degli Arrotini, 1 - 28100 NOVARA Tel. 0321/499488 Fax 0321/520037

Tale funzione permette, sulla base dei dati di input inseriti, di simulare la concentrazione di un dato contaminante in funzione della distanza e del tempo; nello specifico, considerando il parametro Benzene, il più cautelativo ai fini dello studio, con un tempo pari a 2,75 anni (tempo trascorso tra il periodo in cui è stata rilevata la manomissione (Aprile 2016) e la data dell'ultima campagna di monitoraggio – 25/1/2019), una concentrazione pari alla massima assoluta rilevata (4.490 ug/L), il POC posto al confine del sito (PZ2, ponendo distanza pari a 0,1 mt, in quanto con distanza pari a 0 mt il modello di trasporto non può essere implementato) la distanza alla quale la concentrazione risulta pari alla CSC è pari a 750 mt, come rappresentato nel grafico sottostante, per la funzione Cgw(t).

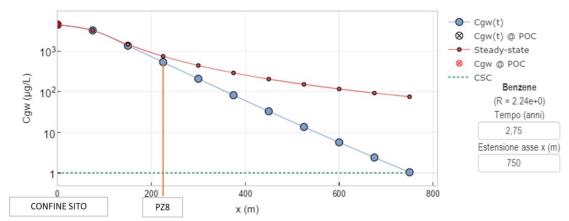


Figura 2 - Stima Cgw(t) del Benzene in funzione della distanza dal confine del sito

La stima fornita risulta sufficientemente rappresentativa, anche in considerazione del fatto che il software stima, al PZ8 (circa 220 mt dal confine del sito), una concentrazione pari a 535 ug/L, ovvero in linea con quella determinata nell'ambito della campagna di monitoraggio del 25/1/2019 (512 ug/L).

Il file relativo all'elaborazione (E0) effettuata per la stima dell'estensione in direzione E della contaminazione in falda, è riportato in Allegato 16, unitamente alle altre elaborazioni condotte ai fini del presente studio.

3.2 MECCANISMI DI TRASPORTO – PERCORSI DI ESPOSIZIONE – BERSAGLI

Nella figura seguente si riporta una rappresentazione grafica dei possibili meccanismi di trasporto della contaminazione e dei percorsi di esposizione, fino al raggiungimento dei potenziali bersagli.

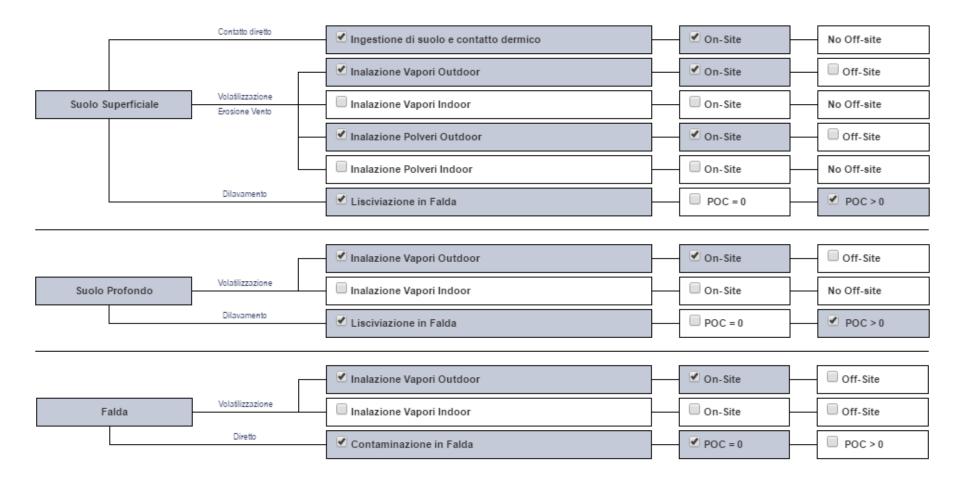


Figura 3 – Schema grafico meccanismi di trasporto, percorsi esposizione, bersagli

3.2.1 SUOLO SUPERFICIALE

Per quanto attiene il suolo superficiale i potenziali bersagli sono rappresentati dai Lavoratori agricoli operanti on site, per quanto modesta e sporadica risulti la presenza in sito e presso le aree limitrofe, oltre alla falda acquifera sottostante, in relazione al superamento delle CSC al punto di conformità, considerato in corrispondenza del piezometro PZ2, ubicato al confine di proprietà del sito.

I meccanismi di trasporto da considerare attivi sono:

- l'erosione del suolo potenzialmente contaminato e la volatilizzazione dei contaminanti, che possono potenzialmente raggiungere il bersaglio Lavoratori agricoli, esposti per possibile ingestione di suolo, contatto dermico e inalazione di polveri e vapori;
- il dilavamento del terreno contaminato e la lisciviazione dei contaminanti verso la falda, con successivo trasporto verso il POC considerato.

Non sono stati considerati come attivi i percorsi di esposizione indoor in relazione al contesto agricolo in cui ricade il sito e all'assenza di fabbricati e/o abitazioni nelle vicinanze.

Come accennato nel precedente paragrafo, in considerazione del fatto che l'area vasta presenta una destinazione d'uso agricola del tutto analoga a quella del sito in oggetto, non sono state effettuate stime del rischio off site, data l'analogia di potenziali bersagli, che condurrebbe ad un risultato meno cautelativo in termini di potenziali rischi e di obiettivi di bonifica.

3.2.2 SUOLO PROFONDO

Per quanto attiene il suolo profondo i potenziali bersagli sono, come per il suolo superficiale, i Lavoratori e la falda acquifera, attraverso gli stessi meccanismi di trasporto e percorsi di esposizione.

Trattandosi di suolo profondo non vengono considerati attivi i percorsi di esposizione diretta quali ingestione e contatto dermico, oltre all'inalazione di polveri.

3.2.3 ACQUE SOTTERRANEE

Per quanto attiene la sorgente in falda, per i Lavoratori, i percorsi considerati attivi sono la volatilizzazione e la successiva inalazione di vapori in ambiente outdoor; per quanto attiene il bersaglio falda viene considerato il superamento delle CSC al POC, individuato nel piezometro PZ2, posto al confine del mappale in cui ricade la contaminazione, peraltro già accertato tramite le campagne di monitoraggio sin qui condotte.

Per quanto attiene il percorso di inalazione vapori dalla falda, ai fini dello studio, si considera esposizione on site quella potenzialmente correlata alla sorgente estesa a valle di PZ8, secondo i criteri precedentemente esposti.

Tale scelta risulta congrua, in considerazione che i potenziali bersagli esposti sono i medesimi, vista la destinazione d'uso che caratterizza il contesto in cui il sito ricade; tale scelta risulta altresì cautelativa in quanto stima l'esposizione direttamente dai vapori provenienti dalla falda, senza l'implementazione di modelli di trasporti in atmosfera.

4. ANALISI DI RISCHIO

L'analisi di rischio verrà sviluppata mediante l'utilizzo del software Risk Net PRO versione 3.1 pro; il software è stato sviluppato nell'ambito della rete RECONnet (Rete Nazionale sulla gestione e la Bonifica dei Siti Contaminati) su iniziativa del Dipartimento di Ingegneria Civile e Ingegneria Informatica dell'Università degli studi di Roma "Tor Vergata".

Il software permette di calcolare il rischio e gli obiettivi di bonifica legati alla presenza di contaminanti all'interno di un sito, applicando la procedura APAT-ISPRA di analisi di rischio sanitaria ("Criteri metodologici l'applicazione dell'analisi assoluta di rischio ai siti contaminati"; APAT-ISPRA 2008) in accordo con quanto previsto dalla normativa italiana (D.Lgs. 152/06 e D.Lgs. 04/08) e delle ultime Linee Guida MATTM del 2014-2015.

La versione 3.1pro del software risulta aggiornata con l'ultima versione della Banca Dati ISS-INAIL rilasciata il marzo 2018.

4.1 MODALITÀ DI SVILUPPO DELLO STUDIO

Considerata la versatilità del software impiegato, che permette di effettuare valutazioni differenziando la dimensione delle 3 sorgenti di contaminazione individuate, si rendono necessarie 4 sole elaborazioni rispetto ai fini del presente studio, di seguito riportate:

- E1: simulazione rispetto alla condizione di minima soggiacenza (falda alta) e calcolo rischi / CSR da suolo superficiale e profondo;
- E2: simulazione rispetto alla condizione di massima soggiacenza (falda bassa) e calcolo rischi / CSR da suolo superficiale e profondo;
- E3: simulazione rischi e calcolo CSR per la contaminazione in falda verso l'ambiente outdoor;
- E4: verifica accettabilità CSR idrocarburi, eseguita rispetto allo scenario più cautelativo;

Come anticipato in precedenza, un'ulteriore elaborazione E0 è stata implementata al fine di stimare l'estensione della sorgente in falda della contaminazione rilevata, rispetto al contaminante maggiormente cautelativo, il Benzene, attraverso la consultazione della funzione del software "Trasporto off site".

4.2 CONCENTRAZIONI RAPPRESENTATIVE SORGENTE – CRS

Per quanto riguarda la stima delle Concentrazioni Rappresentative in Sorgente (CRS) sono stati adottati i seguenti criteri:

- Determinazione delle CRS mediante criteri statistici per il suolo superficiale e profondo, attraverso l'impiego del software USEPA ProUCL 5.0, in accordo con le Linee Guida ISPRA ex APAT, in relazione al fatto che, per queste matrici, si dispone di un numero di verticali di indagine superiore a 10 per ciascuna delle sorgenti;
- CRS poste pari alle Cmax per la sorgente in falda, considerato che il numero di punti disponibili è inferiore a 10, in accordo con le Linee Guida ISPRA ex APAT;
- Per quanto attiene le elaborazioni statistiche con ProUCL 5.0, in presenza di concentrazioni inferiori al MDL ("< x"), così come previsto dalle Linee Guida ISPRA ex APAT, al parametro è stato attribuito un valore di concentrazione pari allo stesso MDL ("C = x").

4.2.1 SUOLO SUPERFICIALE

Per quanto attiene il suolo superficiale, considerata la perimetrazione proposta in Tavola 4, benché i punti in corrispondenza dei quali la contaminazione è stata accertata in questa matrice è pari a 6, il numero di verticali ricadenti nella sorgente risulta pari a 22, di cui 15 contribuenti alla determinazione della CRS:

- \$1, \$2, \$3, \$4, \$5, \$6, \$8, \$9, \$10, \$11, \$14, \$15, \$19, \$21, \$22;
- C1, C2, C3, C5, C7;
- Transetto T4;
- Scavo manomissione 1.

Per ciascuno dei campioni, in caso di disponibilità del dato ARPA, oltre a quello del laboratorio incaricato per conto della Committente, è stato considerato il dato di concentrazione maggiore; per quanto attiene i sondaggi S14, S15 e S19, realizzati quale integrazione in corso d'opera ai fini della perimetrazione della contaminazione osservata in suolo profondo, d'accordo con i tecnici ARPA presenti al campionamento, questi sono stati considerati esenti da contaminazione nel suolo superficiale, non avendovi rilevato alterazione organolettica durante l'esecuzione dei sondaggi; per tale motivo tali punti non contribuiscono al calcolo della CRS, benché ricadenti entro il perimetro o al perimetro della sorgente.

Per quanto attiene i sondaggi C1, C2 e C3, condotti in autonomia per conto della Committente durante le fasi di riparazione dell'effrazione rilevata, benché il suolo superficiale non sia stato oggetto di campionamento e analisi, questi ricadono nella sorgente perimetrata in considerazione del fatto che, in sondaggi a monte, è stata rilevata contaminazione entro tale matrice; tuttavia, tali punti non contribuiscono al calcolo della CRS.

Mediante l'utilizzo del software ProUCL 5.0, la CRS restituita risulta pari a 202 mg/Kg ss (§ Allegato 17).

Il valore sopra indicato è stato successivamente elaborato, in funzione delle analisi di speciazione condotte in fase di caratterizzazione, al fine di determinare la concentrazione di ciascuna delle classi MADEP con numero di atomi C superiore a 12; le speciazioni condotte in fase di caratterizzazione sono risultate essere 3, sono state eseguite dal laboratorio incaricato per conto della Committente, e hanno fornito i seguenti risultati.

CLASSE MADEP	U.M.	S2 (0-1 mt)	S9 (0-1 mt)	S10 (0-1 mt)
C5-C8 alifatici	mg/Kg ss	<3,4	<3,6	<3,3
C9-C12 alifatici	mg/Kg ss	<3,4	<3,6	<3,3
C13-C18 alifatici	mg/Kg ss	249,8	390,4	123,6
C19-C36 alifatici	mg/Kg ss	79	79	70,2
C9-C10 aromatici	mg/Kg ss	<0,73	<0,77	<0,71
C11-C12 aromatici	mg/Kg ss	<17,3	<34,5	<7,0
C13-C22 aromatici	mg/Kg ss	<17,3	<34,5	<7,0

Tabella 12 – Risultati speciazioni idrocarburi suolo superficiale

Sulla base delle concentrazioni determinate, tenuto conto che le sole frazioni quantificate attraverso le analisi risultano essere la C13-C18 Alifatici e la C19-C36 Alifatici, la speciazione più cautelativa risulta essere quella del campione S9 (0-1 mt), che mostra la % di C13-C18 Alifatici superiore; rapportando alla CRS (202 mg/Kg ss) le concentrazioni delle due frazioni quantificate le CRS inserite nel software per la sorgente in suolo superficiale risultano pertanto essere:

C13-C18 Alifatici: 168 mg/Kg ss;

C19-C36 Alifatici: 34 mg/Kg ss.

4.2.2 SUOLO PROFONDO

Per il suolo profondo, il numero di verticali ricadenti nella perimetrazione proposta risulta pari a 28; in questo caso, disponendo di più di un dato per ciascuna verticale, per ciascun contaminante è stato considerato il valore massimo rilevato tra tutte le analisi condotte sui campioni prelevati per ciascuna, tenendo conto del dato più cautelativo tra quelli rilevati dal laboratorio incaricato dalla parte e quelli determinati dal laboratorio ARPA.

Come rappresentato in Tavola 5, le verticali ricadenti in sorgente risultano essere:

- \$1, \$2, \$3, \$4, \$5, \$6, \$7, \$8, \$9, \$10, \$11, \$12, \$14, \$15, \$18, \$19, \$20, \$21;
- C1, C2, C3, C4, C5, C7;
- Trincea parete N;
- Transetti T3, T4;
- Scavo manomissione 1.

Applicando gli stessi criteri di elaborazione menzionati in precedenza per il suolo superficiale, i valori di CRS ottenuti per i contaminanti oggetto di studio risultano essere i seguenti:

Benzene: 10 mg/Kg ss; Etilbenzene: 119 mg/Kg ss; Stirene: 1,2 mg/Kg ss; Toluene: 554 mg/Kg ss; o-Xilene: 31 mg/Kg ss; m,p-Xilene: 62 mg/Kg ss; Xilene: 678 mg/Kg ss; MtBE: 13 mg/Kg ss; 1204 mg/Kg ss; Idrocarburi Leggeri C<12: Idrocarburi Leggeri C>12: 14273 mg/Kg ss.

Per quanto attiene gli Idrocarburi, i valori sopra indicati sono stati successivamente elaborati, in funzione delle analisi di speciazione condotte in fase di caratterizzazione, al fine di determinare la concentrazione di ciascuna delle classi MADEP con numero di atomi C superiore a 12; le speciazioni condotte in fase di caratterizzazione sono risultate essere 7, di cui 1 eseguita dal laboratorio ARPA, e hanno fornito i seguenti risultati.

CLASSE MADEP	U.M.	ARPA \$11 (2-3 mt)	S10 (1,2-2,2mt)	S11 (1-2mt)	S2 (1-1,8mt)	S10 (2,2-3,1mt)	S11 (2-3mt)	S9 (1,7-2,7mt)
C5-C8	mg/Kg							
alifatici	SS	NR	<3,1	<3,1	<3,6	377	<3,0	<3,0
C9-C12	mg/Kg							
alifatici	SS	NR	244,9	12	<3,6	1470,1	101,7	<3,2
C13-C18	mg/Kg							
alifatici	SS	1140	1117,1	576,8	137,1	2015,4	119,9	47,6
C19-C36	mg/Kg							
alifatici	SS	896	1400	646	36,5	3900	1130	37,9
C9-C10	mg/Kg							
aromatici	SS	NR	383	<0,67	<0,77	2420	23,9	<0,64
C11-C12	mg/Kg							
aromatici	SS	NR	<168,7	<65,3	<5,2	<312,1	<63,9	<6,8
C13-C22	mg/Kg							
aromatici	SS	693	<168,7	<65,3	<5,2	<312,1	<63,9	<6,8

Tabella 13 - Risultati speciazioni idrocarburi suolo profondo

Partendo dai dati in tabella, per ciascuna frazione è stata determinata la concentrazione massima e la somma di tali valori è stata considerata il 100% della miscela; per ciascuna delle classi sono state così individuate le % e, per ciascuna classe, è stata determinata la CRS partendo dalla concentrazione totale CRS_{C<12} + CRS_{C>12} precedentemente determinate, ottenendo i seguenti valori di input:

• C5-C8 Alifatici: 521 mg/Kg ss;

• C9-C12 Alifatici: 2.030 mg/Kg ss;

• C13-C18 Alifatici: 2.783 mg/Kg ss;

• C19-C36 Alifatici: 5.385 mg/kg ss;

C9-C10 Aromatici: 3.341 mg/Kg ss;

C11-C12 Aromatici: 431 mg/Kg ss;

C13-C22 Aromatici: 957 mg/Kg ss.

4.2.3 ACQUE SOTTERRANEE

Per quanto attiene le acque sotterranee, disponendo di un numero complessivo di punti inferiore a 10, la Concentrazione Rappresentativa in Sorgente per ciascun contaminante è stata posta pari al valore massimo riscontrato nell'ambito delle diverse campagne di monitoraggio che hanno interessato il sito, a partire dal maggio 2017.

Considerato quanto sopra, tenuto conto dei dati rilevati dal laboratorio incaricato per conto della Committenza e di quelli rilevati dal Laboratorio ARPA, nell'ambito delle campagne svolte in contraddittorio, le CRS risultano essere le seguenti:

• Benzene: 4.490 ug/L (PZ2, campagna del 12/10/2017);

• Etilbenzene: 11.600 ug/L (PZ4, campagna dell'11/1/2018);

Stirene: 321 ug/L (PZ4, dato ARPA campagna del 22/5/2017);

• Toluene: 36.900 ug/L (PZ4, campagna del 9/11/2017);

• o-Xilene: 6.450 ug/L (PZ4, campagna dell'11/1/2018);

• m,p-Xilene: 18.900 ug/L (PZ2, campagna del 17/4/2018);

• MtBE: 2.000 ug/L (PZ2, campagna del 5/12/2017);

Idrocarburi Tot. come n-Esano 766.000 ug/L (PZ4, campagna del 9/11/2017).

Per quanto attiene gli Idrocarburi Totali come n-Esano, il dato di concentrazione massima rilevata è stato ulteriormente elaborato, sulla base delle analisi di speciazione condotte nell'ambito della prima campagna svolta il 22/5/2017, al fine di definire le CRS per singola classe MADEP, così come previsto; i risultati delle analisi di speciazione, condotte sui campioni PZ2 e PZ4, già rese disponibili agli enti, hanno indicato quanto segue:

CLASSE MADEP	U.M.	PZ2	PZ4
C5-C8 alifatici	ug/L	183	1282
C9-C12 alifatici	ug/L	6	35,8
C13-C18 alifatici	ug/L	18,2	99,7
C19-C36 alifatici	ug/L	27	181
C9-C10 aromatici	ug/L	< 23	53,2
C11-C12 aromatici	ug/L	< 7	< 24,6
C13-C22 aromatici	ug/L	< 7	< 24,6

Tabella 14 – Risultati analisi speciazione acque sotterranee, campagna 22/5/2017

Tenuto conto che, sulla base dei dati rilevati, la speciazione maggiormente cautelativa e rappresentativa, risulta essere quella di PZ4, presidio più vicino alla zona in cui è stata rilevata la manomissione n. 1, calcolando le percentuali di ciascuna delle classi quantificate tramite analisi, le CRS risultano essere:

• C5-C8 Alifatici: 593.576 ug/L;

• C9-C12 Alifatici: 17.826 ug/L;

• C13-C18 Alifatici: 46.162 ug/L;

• C19-C36 Alifatici: 83.804 ug/L;

C9-C10 Aromatici: 24.632 ug/L;

4.3 PARAMETRI ESPOSIZIONE LAVORATORI

Come accennato, il sito e l'area vasta circostante, sono caratterizzati da una destinazione d'uso agricola e i potenziali bersagli sono rappresentati solo dai lavoratori agricoli in ambiente outdoor; per quanto attiene i parametri, i valori di default indicati nella tabella 3.4-3 di cui alle Linee Guida ISPRA ex APAT, sono stati modificati in modo tale da simulare un'esposizione più confacente a quella reale.

FATTORI DI ESPOSIZIONE (EF)	Simbolo	Unità di Misura	Resid	Residenziale		Ricreativo	
PATTORI DI ESPOSIZIONE (EP)	Simbolo	Onita di Misura	Adulto	Bambino	Adulto	Bambino	Adulto
Fattori comuni a tutte le modalità di esposizione							
Peso corporeo	BW	kg	70	15	70	15	70
Tempo medio di esposizione per le sostanze cancerogene	ATc	anni	70	70	70	70	70
Tempo medio di esposizione per le sostanze non cancerogene	ATn	anni	ED	ED	ED	ED	ED
Inalazione di Aria Outdoor (AO)	•	•					
Durata di esposizione	ED	anni	24	6	24	6	25
Frequenza di esposizione	EF	giorni/anno	350	350	350	350	250
Frequenza giornaliera di esposizione outdoor	EFgo	ore/giorno	24	24	3	3	8
Inalazione outdoor	Во	m³/ora	0,9 (a)	0,7 (a)	3,2	1,9	2,5 (b)
Frazione di particelle di suolo nella polvere	Fsd	adim.	1	1	1	1	1
Inalazione di Aria Indoor (AI)							
Durata di esposizione	ED	anni	24	6			25
Frequenza di esposizione	EF	giorni/anno	350	350			250
Frequenza giornaliera di esposizione indoor	EFgi	ore/giorno	24	24		-	8
Inalazione indoor	Bi	m³/ora	0,9	0,7		-	0,9 (b)
Frazione indoor di polvere	Fi	adim.	1	1			1
Contatto dermico con Suolo (SS)							
Durata di esposizione	ED	anni	24	6	24	6	25
Frequenza di esposizione	EF	giorni/anno	350	350	350	350	250
Superficie di pelle esposta	SA	cm ²	5700	2800	5700	2800	3300
Fattore di aderenza dermica del suolo	AF	mg/(cm ² giorno)	0,07	0,2	0,07	0,2	0,2
Fattore di assorbimento dermico	ABS	adim.			0,1 / 0,01(°)		
Ingestione di Suolo (SS)							
Durata di esposizione	ED	anni	24	6	24	6	25
Frequenza di esposizione	EF	giorni/anno	350	350	350	350	250
Frazione di suolo ingerita	FI	adim.	1	1	1	1	1
Tasso di ingestione di suolo	IR	mg/giorno	100	200	100	200	50

Figura 4 – Tabella 3.4-3 pag. 108 Linee Guida ISPRA ex APAT

Considerato che le CSC indicate dalla norma per i siti agricoli sono quelle relative alla colonna A della Tabella 1 Titolo V Parte Quarta del D.Lgs. 152/06, il bersaglio selezionato nel software impiegato è risultato essere un adulto residente; in questo modo, laddove il calcolo delle CSR porti ad una CSR = CSC, questa verrà posta pari al valore di colonna A.

Per quanto attiene i valori attribuiti ai parametri, questi sono stati posti pari ai valori di default previsti per i lavoratori, ad eccezione della frequenza di esposizione EF, per la quale il valore inserito è pari a 10 gg/anno; tale valore, per quanto cautelativo, risulta maggiormente realistico rispetto all'esposizione che si realizza presso il sito in esame e, più in generale, presso il comprensorio presso il quale il sito ricade, per le caratteristiche dei bersagli considerati.

4.4 CARATTERISTICHE DEL SITO

Nella seguente tabella si riportano in sintesi i dati di input descriventi le caratteristiche del sito, secondo l'ordine di inserimento richiesto dal software; nei paragrafi successivi vengono illustrati i criteri secondo i quali sono stati determinati i valori.

	GEOMETRIA SORGENTI – SUOLO SUPERFICIALE	U.M.	E0	E1	E2	E3	E4
L _{s (SS)}	Profondità del top della sorgente nel suolo superficiale rispetto al p.c.	m		1	0		0
d	Spessore della sorgente nel suolo superficiale (insaturo)	m			1		1
W	Estensione della sorgente nella direzione del flusso di falda	m		5	5		55
S _w	Estensione della sorgente nella direzione ortogonale al flusso di falda	m		6	0		60
δ_{air}	Altezza della zona di miscelazione	m			2		2
W '	Estensione della sorgente nella direzione principale del vento	m		4	.9		49
S _w '	Estensione della sorgente nella direzione ortogonale a quella del vento	m					
	GEOMETRIA SORGENTI – SUOLO PROFONDO	U.M.	E0	E1	E2	E3	E4
L _{s (SP)}	Profondità del top della sorgente nel suolo profondo rispetto al p.c.	m			1		1
ds	Spessore della sorgente nel suolo profondo (insaturo)	m		0,45	2,22		0,45
W	Estensione della sorgente nella direzione del flusso di falda	m		6	52		62
S _w	Estensione della sorgente nella direzione ortogonale al flusso di falda	m		8	3		83
δ_{air}	Altezza della zona di miscelazione	m			2		2
W '	Estensione della sorgente nella direzione principale del vento	m		5)	52		52
S _w '	Estensione della sorgente nella direzione ortogonale a quella del vento	m					
	GEOMETRIA SORGENTI – FALDA	U.M.	E0	E1	E2	E3	E4
L _{GW}	Soggiacenza della falda	m		1,45	3,22	1,45	1,45
w	Estensione della sorgente nella direzione del flusso di falda	m	76				
S _w	Estensione della sorgente nella direzione ortogonale al flusso di falda	m	93				
δ_{air}	Altezza della zona di miscelazione	m				2	
W '	Estensione della sorgente nella direzione principale del vento	m				793	
S _w '	Estensione della sorgente nella direzione ortogonale a quella del vento	m					
	ZONA INSATURA – TESSITURA	U.M.	E0	E1	E2	E3	E4
TESSITURA RA	PPRESENTATIVA				SILT LOAM		
θ_{e}	Porosità efficace del terreno in zona insatura	adim.			0,3	883	
θ_{w}	θ _w Contenuto volumetrico di acqua				0,2	255	
θ_{a}	Contenuto volumetrico di aria	adim.			0,1	.28	
θ_{wcap}	Contenuto volumetrico di acqua nella frangia capillare	adim.			0,2	.97	

$ heta_{acap}$	Contenuto volumetrico di aria nella frangia capillare	adim.		0,086				
h _{cap}	Spessore frangia capillare	m			0,6	582		
h _{cr}	Carico idraulico critico (potenziale di matrice)	m		-0,3621				
K _{sat,S}	Conducibilità idraulica del terreno insaturo	m/s			1,25	E-06		
H _W	Battente idrico in superficie	adim		0,	25		0,25	
	ZONA INSATURA – CARATTERISTICHE	U.M.	E0	E1	E2	E3	E4	
ρ_{s}	Densità del suolo	g/cm³		1	,7		1,7	
рН	рН	adim.			6	,8		
f _{oc, SS}	Frazione di carbonio organico nel suolo insaturo superficiale	g-C/g-			0,00)114		
f _{oc, SP}	Frazione di carbonio organico nel suolo insaturo profondo	g-C/g-			0,0	001		
Sr	Frazione residua dei pori nel suolo (per calcolo Cres)	m		0,	04		0,04	
h_{v}	Spessore della zona insatura	m		0,768	2,538	0,768		
	ZONA INSATURA – INFILTRAZIONE NEL SOTTOSUOLO	U.M.	E0	E1	E2	E3	E4	
Р	Piovosità	cm/anno		13	9,2		139,2	
$\eta_{ m outdoor}$	Frazione areale di fratture outdoor (solo per lisciviazione)	adim.			1		1	
l _{ef}	Infiltrazione efficace	cm/anno		17	,44		17,44	
	ZONA SATURA – TESSITURA	U.M.	E0	E1	E2	E3	E4	
TESSITURA RAF	PPRESENTATIVA		SITO SPECIFICO					
K _{sat}	Conducibilità idraulica del terreno saturo	m/s		5,00E-04			5,00E-04	
$\theta_{e,sat}$	Porosità efficace del terreno in zona insatura	adim.			0,2			
	ZONA SATURA – CARATTERISTICHE	U.M.	E0	E1	E2	E3	E4	
da	Spessore acquifero	m		60			60	
i	Gradiente idraulico	adim.		0,003			0,003	
V _{gw}	Velocità di Darcy	m/s			1,50e-06			
V _e	Velocità media effettiva della falda	adim			7,50E-06			
f _{oc, sat}	Frazione di carbonio organico nel suolo saturo	g-C/g-		0,001			0,001	
Sr	Frazione residua dei pori nel suolo (per calcolo Cres)	m		0,	04			
	ZONA SATURA – TRASPORTO E DISPERSIONE IN FALDA	U.M.	E0	E1	E2	E3	E4	
POC	Distanza recettore off site (DAF)	m	0,1	1	.7		17	

a _x	Dispersività longitudinale	m	0,01	1,	70		1,70
a _y	Dispersività trasversale	m	0,00333	0,	57		0,57
a _z	Dispersività verticale	m	0,0005	0,	08		0,08
	AMBIENTE OUTDOOR – DATI METEO			E1	E2	E3	E4
U _{air}	Velocità del vento	m/s		0,82			
P _e	Pe Portata di particolato per unità di superficie				6,90	E-14	

Tabella 15 – Dati di input elaborazioni. In arancio sono indicati i valori di default o calcolati dal software. In grigio i dati non richiesti

4.4.1 GEOMETRIA SORGENTI – SUOLO SUPERFICIALE (§ TAVOLA 8)

L_s (ss) – Profondità del top della sorgente in suolo superficiale

Il parametro è richiesto nelle elaborazioni E1, E2, E4 e il valore attribuito, per tutte le elaborazioni in cui richiesto, è pari a **0 m**; si considera infatti una sorgente di contaminazione in suolo superficiale estesa a partire dal piano campagna.

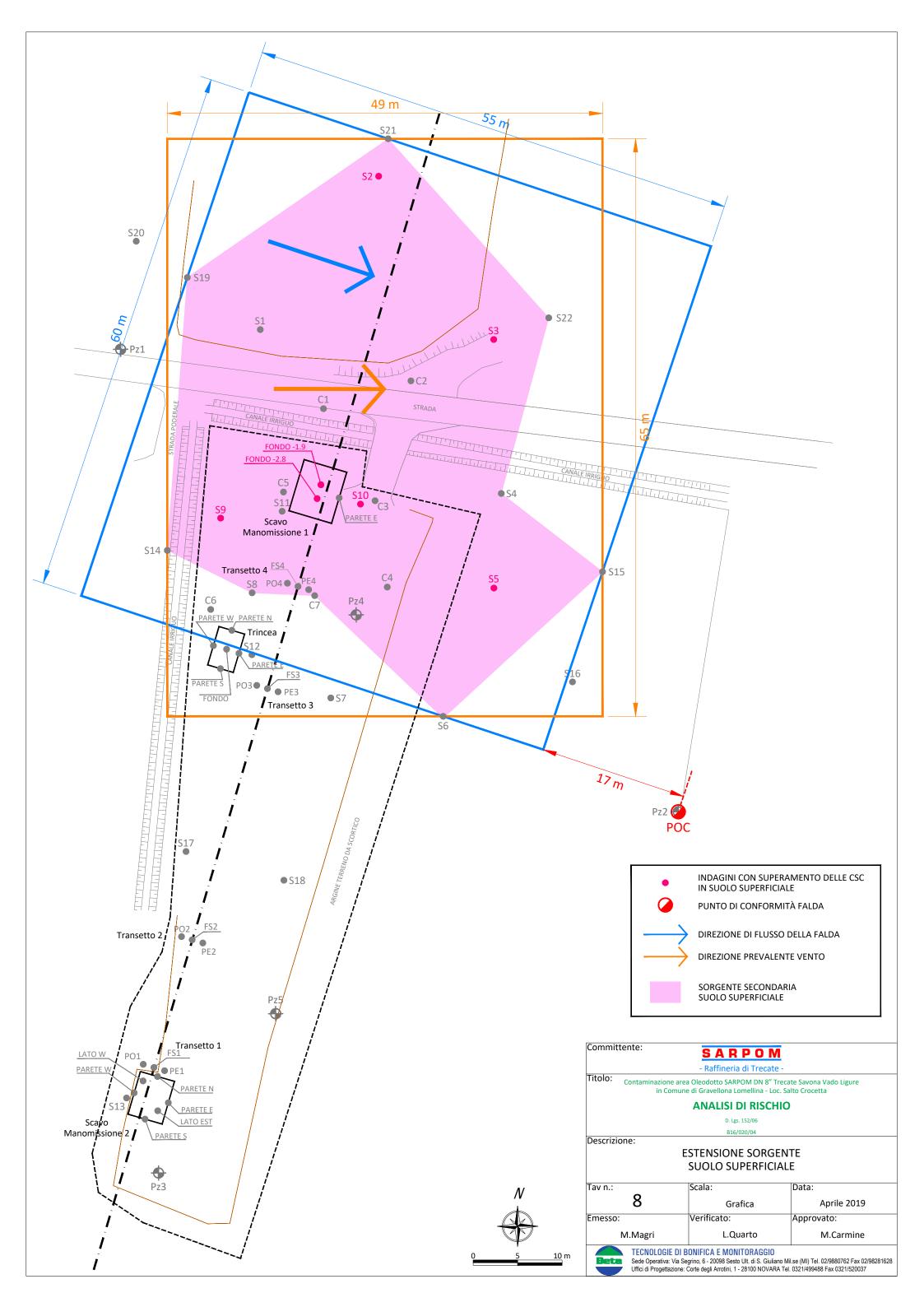
d - Spessore della sorgente in suolo superficiale insaturo

Il parametro è richiesto nelle elaborazioni E1, E2, E4 e il valore attribuito, per tutte le elaborazioni in cui richiesto, è pari a **1 m**; si considera infatti una sorgente di contaminazione in suolo superficiale estesa fino allo spessore massimo.

W - Estensione della sorgente nella direzione di flusso della falda

Il parametro è richiesto nelle elaborazioni E1, E2, E4 e il valore attribuito, per tutte le elaborazioni in cui richiesto, è pari a **55 m**; il valore è stato determinato considerando la sorgente in suolo superficiale con estensione pari a quella rappresentata in Tavola 4, tenendo conto della direzione di flusso della falda rappresentata in Tavola 3.

S_w – Estensione della sorgente nella direzione ortogonale al flusso di falda


Il parametro è richiesto nelle elaborazioni E1, E2, E4 e il valore attribuito, per tutte le elaborazioni in cui richiesto, è pari a **60 m**; il valore è stato determinato considerando una sorgente in suolo superficiale con estensione pari a quella rappresentata in Tavola 4, tenendo conto della direzione di flusso della falda rappresentata in Tavola 3.

δ_{air} – Altezza zona miscelazione

Il parametro è richiesto nelle elaborazioni E1, E2, E4 e il valore attribuito, per tutte le elaborazioni in cui richiesto, è pari a **2 m**, pari al valore di default indicato nelle Linee Guida.

W' – Estensione sorgente nella direzione principale del vento

Il parametro è richiesto nelle elaborazioni E1, E2, E4 e il valore attribuito, per tutte le elaborazioni in cui richiesto, è pari a **49 m**; il valore è stato determinato considerando una sorgente in suolo superficiale con estensione pari a quella rappresentata in Tavola 4.

La direzione del vento prevalente è stata determinata attraverso l'elaborazione dei dati meteo (§ Allegato 18) della stazione ARPA Lombardia di Vigevano n. 6717 e risulta essere orientata W-E, come da diagramma anemologico di seguito riportato.

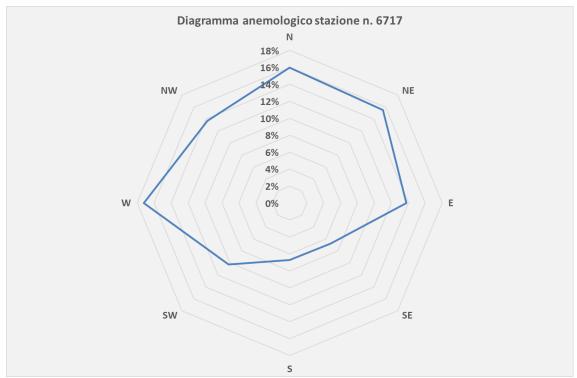
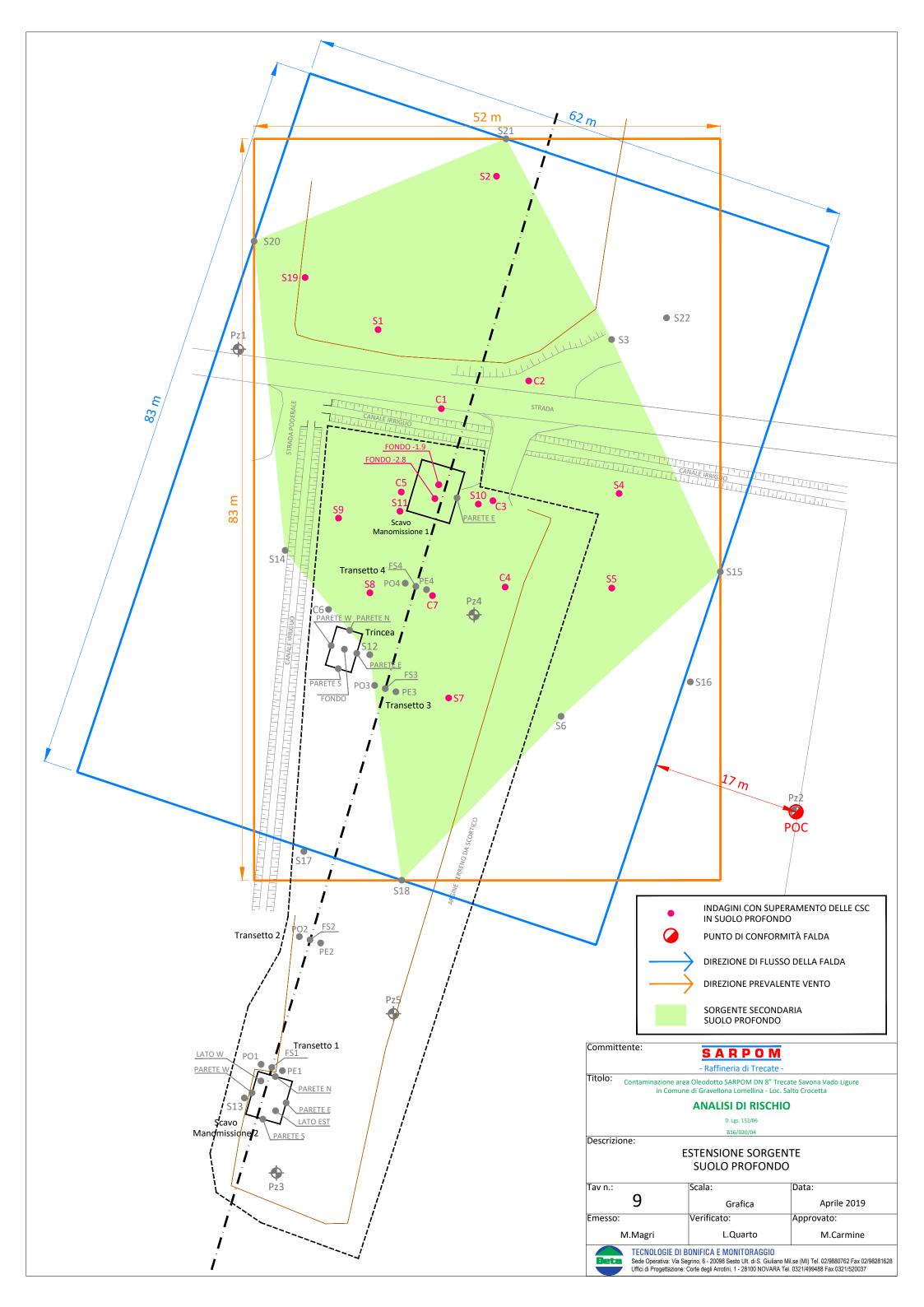


Figura 5 – Diagramma anemologico stazione meteo n. 6717 Vigevano (PV)

4.4.2 GEOMETRIA SORGENTI – SUOLO PROFONDO (§ TAVOLA 9)


L_s (SP) - Profondità del top della sorgente in suolo profondo

Il parametro è richiesto nelle elaborazioni E1, E2, E4 e il valore attribuito, per tutte le elaborazioni in cui richiesto, è pari a **1 m**; si considera infatti una sorgente di contaminazione in suolo profondo a partire dal top.

d_s – Spessore della sorgente in suolo profondo insaturo

Il parametro è richiesto nelle elaborazioni E1, E2, E4; per quanto attiene E1 e E4, il valore è stato determinato a partire dal minimo storico di soggiacenza presso il sito (PZ4, 1,45 m), sottraendo lo spessore della sorgente in suolo superficiale, ottenendo il valore di input pari a **0,45 m**.

Per quanto attiene l'elaborazione E2 (massima soggiacenza) il valore inserito risulta pari a **2,22** m; il valore è stato dedotto a partire dal dato di soggiacenza massima rilevata presso il sito (PZ4, 3,22 m), sottraendo lo spessore della sorgente in suolo superficiale, ottenendo il valore di input.

W – Estensione della sorgente nella direzione di flusso della falda

Il parametro è richiesto nelle elaborazioni E1, E2, E4 e il valore attribuito, per tutte le elaborazioni in cui richiesto, è pari a **62 m**; il valore è stato determinato considerando una sorgente in suolo profondo con estensione pari a quella rappresentata in Tavola 5, tenendo conto della direzione di flusso della falda rappresentata in Tavola 3.

Sw – Estensione della sorgente nella direzione ortogonale al flusso di falda

Il parametro è richiesto nelle elaborazioni E1, E2, E4 e il valore attribuito, per tutte le elaborazioni in cui richiesto, è pari a **83 m**; il valore è stato determinato considerando una sorgente in suolo profondo con estensione pari a quella rappresentata in Tavola 5, tenendo conto della direzione di flusso della falda rappresentata in Tavola 3.

δ_{air} – Altezza zona miscelazione

Il parametro è richiesto nelle elaborazioni E1, E2, E4 e il valore attribuito, per tutte le elaborazioni in cui richiesto, è **2 m**, pari al valore di default indicato nelle Linee Guida.

W' - Estensione sorgente nella direzione principale del vento

Il parametro è richiesto nelle elaborazioni E1, E2, E4 e il valore attribuito, per tutte le elaborazioni in cui richiesto, è pari a **52 m**; il valore è stato determinato considerando una sorgente in suolo profondo con estensione pari a quella rappresentata in Tavola 5.

La direzione del vento prevalente è stata determinata attraverso l'elaborazione dei dati meteo (§ Allegato 18) della stazione ARPA Lombardia di Vigevano n. 6717 e risulta essere orientata W-E, come da diagramma anemologico precedentemente riportato.

4.4.3 GEOMETRIA SORGENTI – FALDA (§ TAVOLE 6 E 7)

L_{GW} - Soggiacenza della falda

Il parametro è richiesto nelle elaborazioni E1, E2, E3, E4 e Il valore attribuito al parametro risulta pari a **1,45 m** per le elaborazioni E1, E3, E4 (minima soggiacenza) e **3,22 m** per l'elaborazione E2 (massima soggiacenza), secondo quanto già indicato in precedenza.

W – Estensione della sorgente nella direzione del flusso di falda

Il parametro è richiesto nell'elaborazione E0 e risulta pari a **76 m**, ricavato considerando la sorgente di contaminazione in falda estesa al confine del sito (PZ2); tale elaborazione ha lo scopo di definire, secondo un criterio empirico e cautelativo, la distanza dal sito alla quale le concentrazioni dei contaminanti possono essere ragionevolmente assunte come conformi alle rispettive CSC.

S_W – Estensione della sorgente nella direzione ortogonale al flusso di falda

Il parametro è richiesto nell'elaborazione E0 e risulta pari a **93 m**, ricavato considerando la sorgente di contaminazione in falda estesa al confine del sito (PZ2), per gli scopi precedentemente definiti.

δ_{air} – Altezza zona miscelazione

Il parametro è richiesto nell' elaborazione E3 e il valore attribuito è **2 m**, pari al valore di default indicato nelle Linee Guida.

W' - Estensione sorgente nella direzione principale del vento

Il parametro è richiesto nell' elaborazione E3 e il valore attribuito è **793 m**; il valore è stato determinato considerando una in falda estesa fino alla distanza di 750 mt dal sito, oltre la quale il software stima, cautelativamente, concentrazioni conformi alle CSC per tutti i contaminanti.

La direzione del vento prevalente è stata determinata attraverso l'elaborazione dei dati meteo (§ Allegato 18) della stazione ARPA Lombardia di Vigevano n. 6717 e risulta essere orientata W-E, come da diagramma anemologico precedentemente riportato.

4.4.4 ZONA INSATURA – TESSITURA

Tessitura rappresentativa

La tessitura rappresentativa dell'insaturo è stata determinata sulla base delle analisi granulometriche condotte sui campioni prelevati a tale scopo presso il sondaggio S19 in fase di caratterizzazione; i risultati, relativi agli strati di terreno sottostante la coltre agraria, caratterizzati di spessori più significativi, già resi disponibili agli enti mediante precedenti trasmissioni, hanno evidenziato quanto segue.

LIVELLO	LIVELLO ARGILLA (A) LIMO		SABBIA (S)	GHIAIA (G)	
STRATO B	1.1.1	71 7	1.4	0.2	
(0,3-1,7 mt)	14,1	71,7	14	0,2	
STRATO C	6.22	1.4.1	70 F	0.1	
(1,7-2,8 mt)	6,22	14,1	79,5	0,1	

Tabella 16 - Risultati analisi granulometriche

I dati ottenuti sono stati inseriti nel diagramma ALS di pagina 58 delle Linee Guida ISPRA ex APAT, al fine di ricavare le tessiture rappresentative per ciascuno strato, risultate essere:

STRATO B (0,3-1,7 mt): SILT LOAM

• STRATO C (1,7-2,8 mt): LOAMY SAND

Considerato che, in entrambe le condizioni di soggiacenza, lo strato di spessore prevalente nell'insaturo risulta essere lo strato B, per entrambe le elaborazioni E1, E2, E3, E4 in cui richiesta, la tessitura considerata è **SILT LOAM**.

I parametri correlati alla tessitura determinata sono pari ai valori di default di cui alle Linee Guida ISPRA ex APAT.

4.4.5 ZONA INSATURA – CARATTERISTICHE

ρ_s – Densità del suolo

Il parametro è richiesto nelle elaborazioni E1, E2, E4 e il valore attribuito è **1,7 g/cm³**, pari al valore di default indicato nelle Linee Guida.

рΗ

Il parametro è richiesto nelle elaborazioni E1, E2, E3, E4 e il valore attribuito è **6,8**, pari al valore di default indicato nelle Linee Guida.

foc, ss - Frazione carbonio organico suolo superficiale

Il parametro è richiesto nelle elaborazioni E1, E2, E3, E4 e il valore attribuito è pari al minimo tra i valori determinati dall'analisi sui campioni di terreno prelevati in fase di caratterizzazione del sito, considerati sia i valori rilevati dal laboratorio incaricato per conto della Committenza, sia quelli determinati dal Laboratorio ARPA.

CAMPIONE	FOC (g/g)
S1 (0-1 m)	0,00114
S6 (0-1 m)	0,00116
S6 (0-1 m) ARPA	0,002
S8 (0-1 m)	0,0015

Tabella 17 - Risultati analisi foc su suolo superficiale

Considerato che il valore maggiormente cautelativo è il minimo, al parametro è stato attribuito, per entrambe le elaborazioni svolte il valore riscontrato in S1 (0-1 m), pari a **0,00114**.

foc, SP – Frazione carbonio organico suolo profondo

Il parametro è richiesto nelle elaborazioni E1, E2, E3, E4 e il valore attribuito è pari al minimo tra i valori determinati mediante analisi sui campioni di terreno prelevati in fase di caratterizzazione del sito, considerati sia i valori rilevati dal laboratorio incaricato per conto della Committenza, sia quelli determinati dal Laboratorio ARPA.

CAMPIONE	FOC (g/g)
S6 (1-1,6 m)	0,00156
S13 (1,6-2,6 m) ARPA	< 0,001
S13 (1,0-1,6 m)	0,0018
S14 (2,2-3,2 m)	0,00145

Tabella 18 – Risultati analisi foc su suolo superficiale

Considerato che il valore maggiormente cautelativo è il minimo, al parametro è stato attribuito, per entrambe le elaborazioni svolte il valore riscontrato da ARPA nel campione S13 (1,6-2,6 m): tenuto conto che il valore risulta inferiore al MDL analitico, il valore è stato posto pari al MDL, ovvero **0,001**.

S_r – Frazione residua di pori nel suolo

Il parametro, al quale è stato attribuito il valore di default indicato dal software, pari a **0,04**, è richiesto nelle elaborazioni E1, E2, E4.

h_v - Spessore zona insatura

Il parametro è richiesto nelle elaborazioni E1, E2, E3, E4 e il valore attribuito a tale parametro è calcolato direttamente dal software sulla base di parametri precedentemente definiti; per le elaborazioni E1, E3, E4 (minima soggiacenza) il software indica un valore pari a **0,768 m** mentre, per l'elaborazione E2 (massima soggiacenza), il valore è pari a **2,538 m**.

4.4.6 ZONA INSATURA – INFILTRAZIONE NEL SOTTOSUOLO

P – Piovosità

Il parametro è richiesto nelle elaborazioni E1, E2, E4 e il valore attribuito, pari a **139,2 cm**, è stato determinato a partire dai dati di precipitazione giornaliera misurati presso la stazione meteo ARPA di Vigevano, ubicata in prossimità della SS494, considerando il massimo tra i valori di piovosità annua cumulata, relativo all'anno 2014.

η_{outdoor} – Frazione areale di fratture outdoor

Il parametro è richiesto nelle elaborazioni E1, E2, E4 e il valore attribuito è pari al valore di default di cui alle Linee Guida ISPRA ex APAT, ovvero 1, che corrisponde ad un terreno completamente permeabile all'acqua, come nel caso in esame.

I_{ef} – Infiltrazione efficace

Il parametro è richiesto nelle elaborazioni E1, E2, E4 e il valore viene determinato in automatico dal software sulla base della piovosità e della tessitura del terreno, applicando le formule di calcolo di cui alle Linee Guida ISPRA ex APAT di pagina 64; nello specifico, il valore determinato è pari a 17,44 cm/anno.

4.4.7 ZONA SATURA – TESSITURA

Tessitura rappresentativa

La tessitura è stata definita su base sito specifica, considerato che il range di tessiture definite di default dalle Linee Guida ex APAT, non contemplano caratteristiche riconducibili al caso in esame, in cui il sottosuolo saturo è caratterizzato da granulometrie afferenti ad una sabbia media / ghiaia.

Nello specifico, la selezione di una tessitura sito specifica, permette di attribuire ai parametri K_{sat} e $\theta_{e, sat}$ valori sito specifici; tali valori sono stati ricavati dalla bibliografia disponibile, che indica una permeabilità dell'ordine di $10^{-3} - 10^{-4}$ m/s ($K_{sat} = 0,0005$ m/s), cui corrisponde una porosità efficace dell'ordine del 20% ($\theta_{e, sat} = 0,2$).

Tali valori sono compatibili con i dati in possesso della scrivente, relativi a prove condotte in siti prossimi all'area di studio, caratterizzati da un contesto idrogeologico del tutto analogo a quello in esame.

Ulteriore conferma dell'attendibilità dei valori considerati è data anche da quanto riportato nella documentazione di cui alla componente geologica del PGT comunale, che indica valori di trasmissività locali pari a $1.3-4.9~\text{m}^2/\text{s}$, cui corrispondono valori di K_{sat} compresi tra 0.013~e 0.049~m/s, ben più elevati di quello considerato, confermando inoltre la conservatività del valore attribuito.

4.4.8 ZONA SATURA – CARATTERISTICHE

d_a – Spessore acquifero

Il parametro è richiesto nelle elaborazioni E0, E1, E2, E4 e il valore attribuito, pari a **60 m**, è stato ricavato dai dati di bibliografia già illustrati nell'ambito del PdC, che indicano uno spessore dell'acquifero nella zona compreso tra 60 e 100 mt; nel caso specifico è stato considerato il valore minimo, maggiormente cautelativo.

i – Gradiente idraulico

Il gradiente idraulico è richiesto nelle elaborazioni E0, E1, E2, E4, ed è stato determinato sulla base delle carte piezometriche elaborate per il sito, basate sui dati misurati nell'ambito delle varie campagne di monitoraggio sin qui svolte; osservando la piezometria in Tavola 3, del tutto analoga alle altre piezometrie elaborate, un gradiente mediamente pari al **3**‰.

v_{gw} – Velocità di Darcy

Viene richiesta in tutte le elaborazioni svolte ed è calcolata dal software sulla base dei valori di K_{sat} e di i; nello specifico il software restituisce il valore di **1,50E-06 m/s**.

ve – velocità media effettiva della falda

Viene richiesta in tutte le elaborazioni svolte ed è calcolata dal software sulla base del valore di v_{gw} e di $\theta_{e, sat}$; nel caso specifico il software restituisce un valore di **7,50E-06**.

foc, sat - Frazione carbonio organico del saturo

Il parametro è richiesto nelle elaborazioni E0, E1, E2, E4 e il valore attribuito è pari al valore di default di cui alle Linee Guida ISPRA ex APAT, ovvero **0,001**.

S_r – Frazione residua di pori nel suolo

Il parametro è richiesto nelle elaborazioni E0, E1, E2, E3, e il valore attribuito è pari al default indicato dal software, ovvero a **0,04**.

4.4.9 ZONA SATURA – TRASPORTO E DISPERSIONE IN FALDA

POC - Distanza dal recettore off site

Il parametro è richiesto in tutte le elaborazioni, eccetto E3, nella quale non è considerato il trasporto off site; i valori attribuiti risultano essere:

- E0, POC = **0,1** m, in quanto non è accettato un valore pari a 0, avendo attivato il percorso "trasporto off site";
- E1, E2, E4, POC = **17 mt**, pari alla distanza tra le sorgenti in suolo superficiale e profondo con il piezometro PZ2, considerato quale punto di conformità, essendo lo stesso presidio ubicato in corrispondenza del confine del sito, misurata secondo la direzione di flusso della falda, come desumibile dalle Tavole 8 e 9.

I valori di dispersività nelle direzioni x, y, z sono state calcolate dal software applicando le equazioni di pagina 69 di cui alle Linee Guida ISPRA ex APAT, partendo dai valori attribuiti al parametro POC.

4.4.10 AMBIENTE OUTDOOR – DATI METEO

Uair - Velocità del vento

La velocità del vento entra in gioco nelle elaborazioni E1, E2, E3, E4, ed è stata determinata elaborando i dati misurati dalla stazione di Vigevano, riferiti alla quota altimetrica di 10 mt; i dati orari misurati sono stati elaborati al fine di ricavare i valori medi su base annua, selezionando il minimo tra i valori calcolati, rappresentative delle condizioni di maggiore cautelatività.

Il valore ottenuto, pari a **1,05 m/s** è stato inserito nel software il quale, sulla base delle caratteristiche dell'area (grado di urbanizzazione e classe di stabilità atmosferica), attraverso le equazioni di cui alle Linee Guida ISPRA ex APAT di pagina 74, riporta il valore alla quota di 2 mt

da piano campagna; considerata una classe di stabilità di tipo "D" e una rugosità superficiale tipica di un suolo rurale, tale valore risulta pari a **0,82 m/s**.

Pe - Portata di particolato per unità di superficie

Il parametro rientra nelle elaborazioni E1, E2, E3, E4 ed il valore attribuito risulta pari al valore di default di cui alle Linee Guida ISPRA ex APAT, pari a 6,9 E-14 g/(cm-s²).

5. RISULTATI

Nel presente capitolo si riportano i risultati delle due elaborazioni condotte, in forma tabellare, mentre in Allegato 16 si riportano i files delle stesse elaborazioni.

5.1 SUOLO SUPERFICIALE

5.1.1 ELABORAZIONE E1 – MINIMA SOGGIACENZA

Contaminante	CRS	f	CRS/f	Csat	Cres	R (HH)	HI (HH)	Rgw (GW)
	mg/kg		mg/kg	mg/kg	mg/kg	-	-	-
Alifatici C13-C18	1.68e+2		1.68e+2	7.81e+0	7.80e+0	-	7.63e-5	1.38e-2
Alifatici C19-C36	3.40e+1		3.40e+1	6.81e-1	6.81e-1	-	7.72e-7	4.81e-6
Cumulato Outdoor (On-site)							7.70e-5	
Rischio per la risorsa idrica per gli idrocarburi - MADEP (Off-site)								1.38e-2

Tabella 19 - Rischi da suolo superficiale condizioni di minima soggiacenza

I risultati indicati nella precedente tabella mostrano valori di R, HI e RGW accettabili in quanto inferiori alle soglie di accettabilità individuali e cumulative.

5.1.2 ELABORAZIONE E2 – MASSIMA SOGGIACENZA

Contaminante	CRS	f	CRS/f	Csat	Cres	R (HH)	HI (HH)	Rgw (GW)
	mg/kg	-	mg/kg	mg/kg	mg/kg	-	-	-
Alifatici C13-C18	1.68e+2		1.68e+2	7.81e+0	7.80e+0	-	7.63e-5	6.22e-3
Alifatici C19-C36	3.40e+1		3.40e+1	6.81e-1	6.81e-1	-	7.72e-7	2.16e-6
Cumulato Outdoor (On-site)							7.70e-5	
Rischio per la risorsa idrica per gli idrocarburi - MADEP (Off-site)								6,22e-3

Tabella 20 – Rischi da suolo superficiale condizioni di massima soggiacenza

L'elaborazione condotta per le condizioni di massima soggiacenza per il rischio da suolo superficiale indica, per quanto attiene R e HI, risultati pari a quelli determinati per le condizioni di minima soggiacenza, indicando pertanto l'assenza di influenza della soggiacenza della falda rispetto ai rischi sanitari correlati a questa sorgente.

Per quanto attiene RGW, benché i risultati risultino parimenti conformi rispetto alla condizione di minima soggiacenza, i valori determinati in quest'ultima risultano maggiormente cautelativi rispetto a quelli determinati in condizioni di massima soggiacenza.

5.2 SUOLO PROFONDO

5.2.1 ELABORAZIONE E1 – MINIMA SOGGIACENZA

Contaminante	CRS	f	CRS/f	Csat	Cres	R (HH)	HI (HH)	Rgw (GW)
	mg/kg		mg/kg	mg/kg	mg/kg	-	-	-
Alifatici C5-C8	<u>5.21e+2</u>		5.21e+2	7.13e+1	6.60e+1	-	5.90e-4	7.47e+0
Alifatici C9-C12	2.03e+3		2.03e+3	6.85e+0	6.85e+0	-	2.30e-3	2.76e-1
Alifatici C13-C18	2.78e+3		2.78e+3	6.85e+0	6.85e+0	-	-	3.78e-1
Alifatici C19-C36	<u>5.39e+3</u>		<u>5.39e+3</u>	5.97e-1	5.97e-1	-	-	1.26e-3
Aromatici C9-C10	3.34e+3		3.34e+3	9.97e+1	9.95e+1	-	3.03e-2	1.59e+2
Aromatici C11-C12	4.31e+2		4.31e+2	2.99e+1	2.99e+1	-	1.33e-3	7.78e+0
Aromatici C13-C22	9.57e+2		9.57e+2	2.99e+1	2.99e+1	-	-	1.73e+1
Benzene	1.00e+1		1.00e+1	5.60e+2	8.46e+3	6.31e-9	7.55e-5	1.04e+3
Etilbenzene	1.19e+2		1.19e+2	1.05e+2	7.88e+3	2.41e-8	2.70e-5	1.25e+2
Stirene	1.20e+0		1.20e+0	1.87e+2	8.32e+3	4.86e-11	2.72e-7	2.59e+0
Toluene	5.54e+2		5.54e+2	2.13e+2	7.98e+3	-	2.51e-5	2.97e+3
Xileni	6.78e+2		6.78e+2	5.82e+1	5.80e+1	-	1.54e-3	-
p-Xilene	6.20e+1		6.20e+1	8.85e+1	7.81e+3	-	1.40e-4	3.70e+2
o-Xilene	3.10e+1		3.10e+1	9.77e+1	7.99e+3	-	7.02e-5	-
MtBE	1.30e+1		1.30e+1	8.33e+3	1.49e+4	-	9.82e-7	4.60e+1
Cumulato Outdoor (On-site)							3.64e-2	
Rischio per la risors	Rischio per la risorsa idrica per gli idrocarburi - MADEP (Off-site)							

Tabella 21 – Rischi da suolo profondo condizioni di minima soggiacenza

I risultati indicati nella precedente tabella mostrano valori di R e HI accettabili in quanto inferiori alle soglie di accettabilità individuali e cumulative; per quanto attiene RGW i risultati mostrano valori superiori alla soglia di accettabilità, per tutti i contaminanti presenti.

5.2.2 ELABORAZIONE E2 – MASSIMA SOGGIACENZA

Contaminante	CRS	f	CRS/f	Csat	Cres	R (HH)	HI (HH)	Rgw (GW)
	mg/kg	-	mg/kg	mg/kg	mg/kg		-	-
Alifatici C5-C8	5.21e+2		5.21e+2	7.13e+1	6.60e+1	-	2.91e-3	7.47e+0
Alifatici C9-C12	2.03e+3		2.03e+3	6.85e+0	6.85e+0	-	8.73e-3	2.76e-1
Alifatici C13-C18	2.78e+3		2.78e+3	6.85e+0	6.85e+0	-	-	3.78e-1
Alifatici C19-C36	5.39e+3		5.39e+3	5.97e-1	5.97e-1	-	-	1.26e-3
Aromatici C9-C10	3.34e+3		3.34e+3	9.97e+1	9.95e+1	-	1.49e-1	1.59e+2
Aromatici C11-C12	4.31e+2		4.31e+2	2.99e+1	2.99e+1	-	1.33e-3	7.78e+0
Aromatici C13-C22	9.57e+2		9.57e+2	2.99e+1	2.99e+1	-	-	1.73e+1
Benzene	1.00e+1		1.00e+1	5.60e+2	8.46e+3	3.11e-8	3.73e-4	1.04e+3
Etilbenzene	1.19e+2		1.19e+2	1.05e+2	7.88e+3	1.19e-7	1.33e-4	1.25e+2
Stirene	1.20e+0		1.20e+0	1.87e+2	8.32e+3	2.40e-10	1.34e-6	2.59e+0
Toluene	5.54e+2		5.54e+2	2.13e+2	7.98e+3	-	1.24e-4	2.97e+3
Xileni	6.78e+2		6.78e+2	5.82e+1	5.80e+1	-	7.58e-3	-

Contaminante	CRS	f	CRS/f	Csat	Cres	R (HH)	HI (HH)	Rgw (GW)
	mg/kg	-	mg/kg	mg/kg	mg/kg	-	-	-
p-Xilene	6.20e+1		6.20e+1	8.85e+1	7.81e+3	-	6.93e-4	3.70e+2
o-Xilene	3.10e+1		3.10e+1	9.77e+1	7.99e+3	-	3.47e-4	-
MtBE	1.30e+1		1.30e+1	8.33e+3	1.49e+4	-	4.84e-6	6.48e+1
Cumulato Outdoor	Cumulato Outdoor (On-site)							
Rischio per la risorsa idrica per gli idrocarburi - MADEP (Off-site)								1.92e+2

Tabella 22 – Rischi da suolo profondo condizioni di massima soggiacenza

I risultati indicati nella precedente tabella mostrano valori di R e HI accettabili in quanto inferiori alle soglie di accettabilità individuali e cumulative; per quanto attiene RGW i risultati mostrano valori superiori alla soglia di accettabilità, per tutti i contaminanti presenti.

Rispetto alle condizioni di minima soggiacenza, i valori determinati risultano di un ordine di grandezza più elevati per R e HI, mentre per RGW il valore rischio risulta di pari valore, indicando pertanto che la soggiacenza non incide sul rischio per la falda da suolo profondo.

5.3 ACQUE SOTTERRANEE (ELABORAZIONE E3)

Contaminante	CRS	f	CRS/f	Sol	R (HH)	HI (HH)	Rgw (GW)
	μg/L	-	μg/L	μg/L	-	-	-
Alifatici C5-C8	5.94e+5		5.94e+5	1.10e+4	-	1.23e+1	1.70e+3
Alifatici C9-C12	1.78e+4		1.78e+4	1.00e+1	-	4.14e-1	5.09e+1
Alifatici C13-C18	4.62e+4		4.62e+4	1.00e+1	-	-	1.32e+2
Alifatici C19-C36	8.38e+4		8.38e+4	1.50e-3	-	-	2.39e+2
Aromatici C9-C10	2.46e+4		2.46e+4	5.10e+4	-	2.24e-2	7.04e+1
Benzene	4.49e+3		4.49e+3	1.79e+6	2.50e-7	3.00e-3	4.49e+3
Etilbenzene	1.16e+4		1.16e+4	1.69e+5	2.24e-7	2.51e-4	2.32e+2
Stirene	3.21e+2		3.21e+2	3.10e+5	4.63e-10	2.59e-6	1.28e+1
Toluene	3.69e+4		3.69e+4	5.26e+5	-	1.53e-4	2.46e+3
p-Xilene	1.89e+4		1.89e+4	1.62e+5	-	3.57e-3	1.89e+3
o-Xilene	6.45e+3		6.45e+3	1.78e+5	-	9.32e-4	-
MtBE	2.00e+3		2.00e+3	5.10e+7	-	1.42e-6	5.00e+1
Cumulato Outdoor (C	n-site)				4.75e-7	1.28e+1	
Rischio per la risorsa	idrica per	gli idrocarl	ouri - MADE	P			<u>2.19e+3</u>

Tabella 23 – Rischi dalla falda

I risultati di cui alla precedente tabella evidenziano valori di R accettabili mentre, per quanto attiene HI, si rileva un valore superiore alla soglia di accettabilità per il solo parametro Idrocarburi Alifatici C5-C8.

Per quanto attiene il rischio per la falda, avendo considerato la sorgente estesa sino al POC, con concentrazioni superiori alle CSC, il valore risulta superiore alla soglia di accettabilità per tutti i parametri.

In relazione al rischio HI occorre tuttavia evidenziare che tale risultato risente fortemente della cautelatività delle scelte effettuate, che attribuiscono alla sorgente estesa a valle sito, una concentrazione pari alla massima rilevata in sito, simulando – pertanto – un'esposizione scarsamente rappresentativa della realtà ed estremamente sovrastimata.

5.4 VALUTAZIONE COMPLESSIVA DEI RISULTATI

Sulla base dei risultati ottenuti precedentemente illustrati si può complessivamente rilevare quanto di seguito esposto:

- Per quanto attiene il suolo superficiale i rischi R, HI e RGW sono accettabili in tutte le condizioni considerate, riconducendo a risultati identici per R e HI. Per quanto attiene RGW, la condizione di maggiore cautela è determinata dalle condizioni di minima soggiacenza;
- Per quanto attiene il suolo profondo i valori di R sono accettabili in tutte le condizioni
 considerate, con valori maggiori per la condizione di massima soggiacenza (E2). Per
 quanto attiene RGW i valori ottenuti superano la soglia di accettabilità evidenziando in
 ogni caso che la soggiacenza non risulta incidere sul risultato, avendo le elaborazioni
 condotto a identici risultati;
- Per quanto attiene la falda i risultati indicano valori di R inferiori alla soglia di accettabilità, mentre per HI si rileva un superamento della soglia per il parametro Idrocarburi Alifatici C5-C8, da ricondurre all'estrema cautelatività delle condizioni imposte. Per quanto attiene RGW, considerando che le concentrazioni al POC risultano superiori alle CSC per tutti i parametri considerati, l'indice risulta eccedere la soglia di accettabilità.

6. OBIETTIVI DI BONIFICA

Sulla base di quanto esposto in precedenza, gli obiettivi di bonifica verranno calcolati a partire dalle seguenti elaborazioni, in relazione alle quali sono state determinate le condizioni di maggiore cautelatività:

- E1 (minima soggiacenza) per il rischio da suolo superficiale;
- E2 (massima soggiacenza) per il rischio da suolo profondo;
- E3 per il rischio dalla falda.

6.1 SUOLO SUPERFICIALE

Contaminante	CRS	CSRind	f	CSRcum	CSC	Csat	R (HH)	HI (HH)	Rgw (GW)
	mg/kg	mg/kg	-	mg/kg	mg/kg	mg/kg	-		-
Alifatici C13-C18	1.68e+2	12168	2	6084	5.00e+1	7.81e+0	-	2.76e-3	5.00e-1
Alifatici C19-C36	3.40e+1	>1e+6	2	>1e+6	5.00e+1	6.81e-1	-	8.03e-2	5.00e-1
Cumulato Outdoor (On-site)								8.31-02	
Rischio per la risors	Rischio per la risorsa idrica per gli idrocarburi - MADEP (Off-site)							-	1.00e+0

Tabella 24 - CSR suolo superficiale

I valori di CSR individuale restituiti dal software per i contaminanti in suolo superficiale, sono stati opportunamente ridotti di un fattore 2, al fine di ottenere valori di HI e RGW accettabili anche considerando la cumulatività dei singoli contribuiti.

Sulla base dei risultati indicati nella colonna CSRcum, considerando il frazionamento tipico della miscela idrocarburica e adottando il criterio della frazione critica, il software restituisce il valore di CSR espresso come Idrocarburi Pesanti C>12, che risulta pari a

PARAMETRO	CSR SS (mg/Kg ss)
Idrocarburi C>12	7.320

Tabella 25 - Obiettivi di bonifica Suolo superficiale

6.2 SUOLO PROFONDO

Contaminante	CRS	CSRind	f	CSRcum	csc	Csat R (HH) HI (HH)		HI (HH)	Rgw (GW)
	mg/kg	mg/kg	-	mg/kg	mg/kg	mg/kg	-	-	
Alifatici C5-C8	5.21e+2	<u>69.7</u>	42	<u>1.7</u>	1.00e+1	7.13e+1	-	9.28e-6	2.38e-2
Alifatici C9-C12	2.03e+3	7366	200	36.8	1.00e+1	6.85e+0	-	1.58e-4	5.00e-3
Alifatici C13-C18	2.78e+3	7366	90	<u>81.8</u>	5.00e+1	6.85e+0	-	-	1.11e-2
Alifatici C19-C36	5.39e+3	>1e+6	5000	<u>856</u>	5.00e+1	5.97e-1	-	-	2.00e-4
Aromatici C9-C10	3.34e+3	21.0	2.125	9.9	1.00e+1	9.97e+1	-	4.42e-4	4.71e-1
Aromatici C11-C12	4.31e+2	<u>55.4</u>	43	<u>1.3</u>	1.00e+1	2.99e+1	-	3.99e-6	2.33e-2
Aromatici C13-C22	9.57e+2	<u>55.4</u>	2.125	<u>26.1</u>	5.00e+1	2.99e+1	-	-	4.71e-1
Benzene	1.00e+1	0.0096		0.100	1.00e-1	5.60e+2	-	-	-
Etilbenzene	1.19e+2	0.95	2	0.48	5.00e-1	1.05e+2	4.75e-10	5.32e-7	5.00e-1
Stirene	1.20e+0	0.46		0.50	5.00e-1	1.87e+2	-	-	-
Toluene	5.54e+2	0.19		0.50	5.00e-1	2.13e+2	-	-	-
Xileni	6.78e+2	89458	2	44729	5.00e-1	5.82e+1	-	5.00e-1	-
p-Xilene	6.20e+1	0.17		0.50	5.00e-1	8.85e+1	-	-	-
o-Xilene	3.10e+1	89458	2	44729	5.00e-1	9.77e+1	-	5.00e-1	-
MtBE	1.30e+1	0.20		10.0	1.00e+1	8.33e+3	-	-	-
Cumulato Outdo	Cumulato Outdoor (On-site)							1.00e+0	
Rischio per la ris	sorsa idrio	ca per gli	idrocar	buri - MAD	EP (Off-si	te)	-	-	1.00e+0

Tabella 26 - CSR suolo profondo

I valori di CSR individuali restituiti dal software sono stati opportunamente ridotti al fine di ottenere valori di R, HI e RGW accettabili, anche considerando la cumulatività dei singoli contribuiti tenuto conto che, come previsto dalle nuove linee guida emanate dal MATTM, laddove un contaminante presenti una CSR inferiore alla CSC di legge, la stessa CSR viene posta pari alla CSC e il contaminante viene escluso dal calcolo dei rischi cumulati.

Per quanto attiene i contaminanti rientranti nella categoria Solventi Organici Aromatici e MtBE, le CSR sono state poste pari alle CSC di cui alla Tabella 1 Colonna A Allegato 5 Titolo V Parte Quarta del D.Lgs. 152/06 (siti ad uso verde e residenziale) mentre, per gli idrocarburi, sulla base dei risultati indicati nella colonna CSRcum, considerando il frazionamento tipico della miscela idrocarburica e adottando il criterio della frazione critica, il software restituisce il valore di CSR espressi come Idrocarburi Leggeri C<12 e Idrocarburi Pesanti C>12.

PARAMETRO	CSR SP (mg/Kg ss)
Idrocarburi C<12	46
Idrocarburi C>12	421
Benzene	0,1
Etilbenzene	0,5
Stirene	0,5
Toluene	0,5
Xilene (e suoi isomeri)	0,5
MtBE	10

Tabella 27 – Obiettivi di bonifica Suolo profondo

6.3 FALDA

Per quanto attiene la falda, per ciascun contaminante, le CSR risultano pari alle CSC, che dovranno essere rispettate al confine del sito, ovvero in corrispondenza del piezometro PZ2; il rispetto delle CSC al confine del sito comporterà il raggiungimento di analoga situazione di conformità anche per i piezometri posti in valle idrogeologica, in particolare PZ8.

PARAMETRO	CSR FALDA (ug/L)
Idrocarburi totali come n-Esano	350
Benzene	1
Etilbenzene	50
Stirene	25
Toluene	15
Xilene (e suoi isomeri)	10
MtBE	40

Tabella 28 - Obiettivi di bonifica falda

6.4 VERIFICA ACCETTABILITÀ OBIETTIVI DI BONIFICA (ELABORAZIONE E4)

In considerazione degli obiettivi di bonifica ottenuti per le matrici suolo superficiale e suolo profondo, che risultano superiori alle CSC, attraverso l'elaborazione E4 è stata effettuata una verifica dell'accettabilità del rischio in modalità inversa, per gli idrocarburi C<12 e C>12, unici per i quali le CSR risultano superiori alle CSC, partendo dalla speciazione caratteristica utilizzata per le elaborazioni E1÷E2.

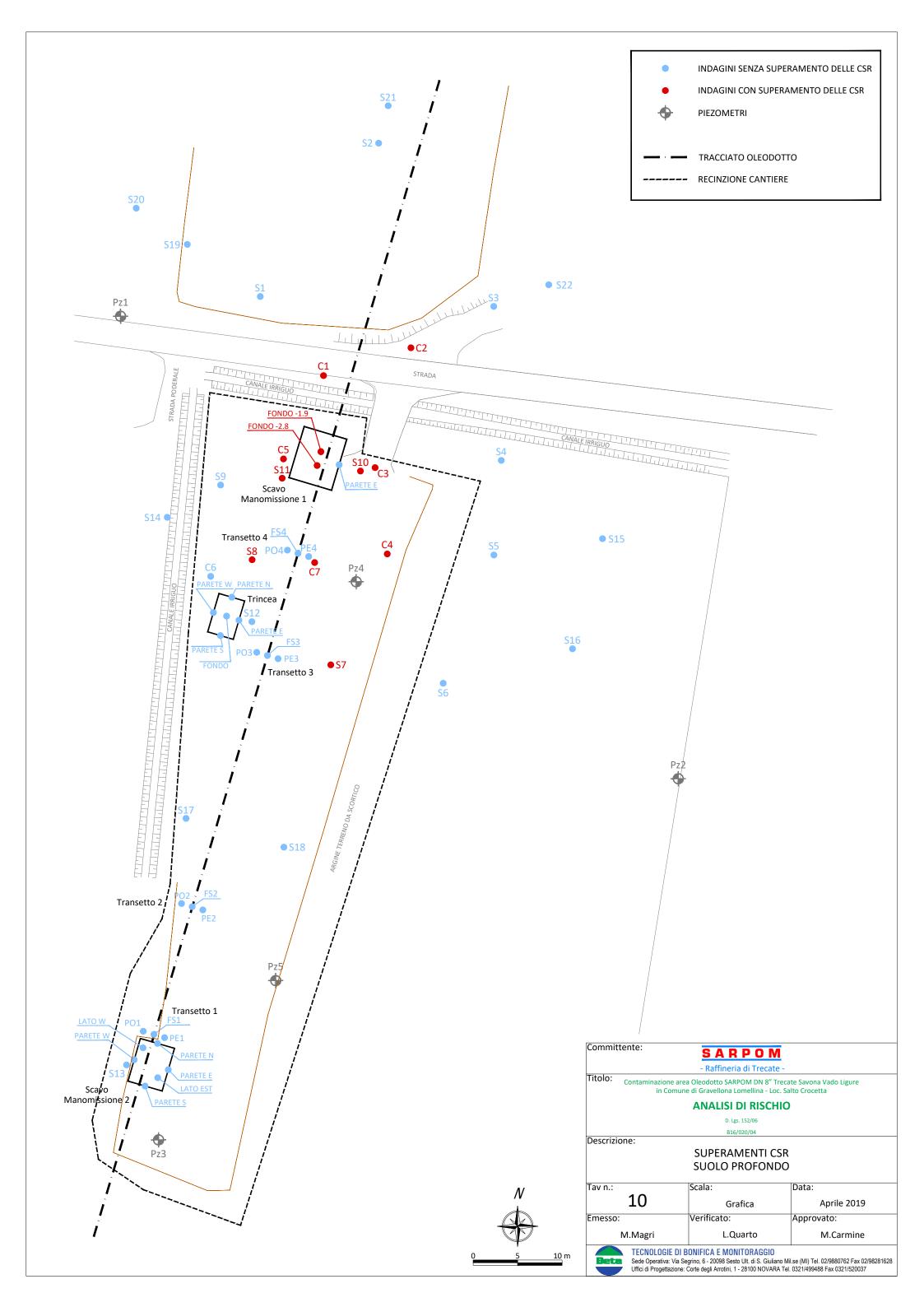
La verifica è stata svolta considerando le condizioni di minima soggiacenza, risultate maggiormente cautelative per la sorgente in suolo superficiale; tale scelta non incide sulla

verifica da suolo profondo, in quanto il bersaglio più sensibile in relazione alla quale sono state derivate le CSR (falda) non indica variazioni nel risultato correlate alla soggiacenza. Nelle seguenti tabelle si riportano i risultati delle verifiche condotte.

Contaminante	CRS	f	CRS/f	Csat	Cres	R (HH)	HI (HH)	Rgw (GW)
	mg/kg	-	mg/kg	mg/kg	mg/kg	-	-	-
Alifatici C13-C18	6.09e+3		6.09e+3	7.81e+0	7.80e+0	-	2.76e-3	5.00e-1
Alifatici C19-C36	1.23e+3		1.23e+3	6.81e-1	6.81e-1	-	2.80e-5	1.74e-4
Cumulato Outdoo	Cumulato Outdoor (On-site)							
Rischio per la risc	Rischio per la risorsa idrica per gli idrocarburi - MADEP (Off-site)							5.01e-1

Tabella 29 – Risultati verifica in modalità inversa CSR suolo superficiale

Contaminante	CRS	f	CRS/f	Csat	Cres	R (HH)	HI (HH)	Rgw (GW)
	mg/kg	-	mg/kg	mg/kg	mg/kg	-	-	-
Alifatici C5-C8	1.55e+0		1.55e+0	7.13e+1	6.60e+1	-	1.76e-6	2.22e-2
Alifatici C9-C12	6.04e+0		6.04e+0	6.85e+0	6.85e+0	-	6.84e-6	8.20e-4
Alifatici C13-C18	7.58e+1		7.58e+1	6.85e+0	6.85e+0	-	-	1.03e-2
Alifatici C19-C36	1.47e+2		1.47e+2	5.97e-1	5.97e-1	-	-	3.43e-5
Aromatici C9-C10	9.95e+0		9.95e+0	9.97e+1	9.95e+1	-	9.02e-5	4.74e-1
Aromatici C11-C12	1.28e+0		1.28e+0	2.99e+1	2.99e+1	-	3.96e-6	2.31e-2
Aromatici C13-C22	2.61e+1		2.61e+1	2.99e+1	2.99e+1	-	-	4.71e-1
Cumulato Outdoor (On-site)						-	1.03e-4	
Rischio per la risor	Rischio per la risorsa idrica per gli idrocarburi - MADEP (Off-site)							1.00e+0


Tabella 30 – Risultati verifica in modalità inversa CSR suolo superficiale

I risultati evidenziano l'accettabilità dei rischi derivati da CSR degli idrocarburi C<12 e C>12, sia per il suolo superficiale che per il suolo profondo, risultando pertanto compatibili con le indicazioni fornite dalle Linee Guida emanate dal MATTM.

6.5 CONFRONTO CRS VS OBIETTIVI DI BONIFICA

Nelle seguenti tabelle si riporta il risultato del confronto tra gli obiettivi di bonifica determinati e le concentrazioni rilevate presso i campioni / sondaggi / trincee ricadenti nelle sorgenti di contaminazione individuate.

In Tavola 10 si riporta una sintesi dei superamenti riscontrati rispetto alle CSR per suolo superficiale e profondo, in relazione ai quali si renderà necessario basare il successivo progetto operativo di bonifica.

6.5.1 SUOLO SUPERFICIALE

Il confronto tra gli obiettivi di bonifica per il suolo superficiale, relativo al solo parametro Idrocarburi C>12, risultato non conforme in fase di indagine e di caratterizzazione del sito, è riportato nella seguente tabella; sono stati considerati i campioni di suolo superficiale prelevati e analizzati dai laboratori incaricati per conto della parte e dal laboratorio ARPA.

Parametro	Idrocarburi Pesanti C>12 – mg/Kg ss
CSR	7.320
S1 (0-1mt)	8,51
S2 (0-1mt)	346
S3 (0-1mt)	165
S4 (0-1mt)	10,3
S5 (0-1mt)	270
S6 (0-1mt)	9,64
S6 (0-1mt) ARPA	< 20
S8 (0-1mt)	5,84
S9 (0-1mt)	407
S10 (0-1mt)	192
S10 (0-1mt) ARPA	67
S11 (0-1mt)	<3,9
S12 (0-1mt)	4,32
S21 (0-1 mt)	14,6
S21 (0-1 mt) ARPA	< 20
S22 (0-1 mt)	14,2
S22 (0-1 mt) ARPA	< 20
C0 Mamom. 1 0-1,10 m	< 25
CO Trincea 0-1,8 m	< 25
T4-PO4 (med.)	< 25
T4-PE4 (med.)	< 25
C5 (0-1 m)	< 25
C7 (0-1 m)	< 25

Tabella 31 – Confronto CRS vs Obiettivi di bonifica, suolo superficiale

Il risultato del confronto tra la CSR ottenuta e le concentrazioni rilevate in sorgente evidenziano che tutti i campioni risultano conformi, indicando pertanto che il suolo superficiale risulta non contaminato.

6.5.2 SUOLO PROFONDO

Il confronto tra gli obiettivi di bonifica per il suolo profondo, relativo ai parametri risultati non conformi in fase di indagine e di caratterizzazione del sito, è riportato nella seguente tabella; sono stati considerati i campioni di suolo profondo prelevati e analizzati dai laboratori incaricati per conto della parte e dal laboratorio ARPA.

Parametro	benzene	etilbenzene	stirene	toluene	o-xilene	m,p-xilene	xilene	C<12	MtBE	C>12
U.M.	mg/kg ss	mg/kg ss	mg/kg ss	mg/kg ss	mg/kg ss	mg/kg ss	mg/kg ss	mg/kg ss	mg/kg ss	mg/kg ss
CSR	0,1	0,5	0,5	0,5	0,5	0,5	0,5	46	10	421
S1 (1,0-1,6mt)										137
S1 (1,3mt)	<0,0044	<0,0062	<0,0051	<0,0046	<0,0069	<0,013	<0,013	<0,15	<0,029	
S1 (1,6-2,6mt)										8,06
S1 (1,6-2,6 mt) ARPA										< 20
S1 (2,1mt)	<0,0045	<0,0064	<0,0052	<0,0047	<0,007	<0,013	<0,013	<0,15	<0,029	
S2 (1,0-1,8mt)										200
S2 (1,4mt)	<0,0042	<0,0059	<0,0048	<0,0044	<0,0065	<0,012	<0,012	<0,14	<0,027	
S2 (1,8-2,8mt)										9,64
S2 (2,3mt)	<0,0048	<0,0068	<0,0056	<0,0051	<0,0075	<0,014	<0,014	<0,16	<0,031	
S3 (1,6-2,6mt)										<3,8
S3 (2,1mt)	<0,004	<0,0056	<0,0046	<0,0042	<0,0062	<0,012	<0,012	<0,14	<0,026	
S3 (2,1mt) ARPA								< 1		
S4 (1-1,8mt)										189
S4 (1,4mt)	<0,003	<0,0043	<0,0035	<0,0032	<0,0047	<0,009	<0,009	<0,1	<0,02	
S4 (1,8-2,8mt)										31,2
S4 (2,3mt)	<0,0068	<0,0097	<0,0079	<0,0072	<0,011	<0,02	<0,02	<0,23	<0,044	
S5 (1,6-2,6mt)										88
S5 (2,1mt)	<0,0029	<0,0041	<0,0033	<0,003	<0,0045	<0,0085	<0,0085	1,77	<0,019	
S6 (1,0-1,7mt)										<3,9
S6 (1,3mt)	<0,031	<0,044	<0,036	<0,033	<0,048	<0,092	<0,092	<1,1	<0,2	
S6 (1,7-2,7mt)										8,44
S6 (1,7-2,7 mt) ARPA										< 20
S6 (2,2mt)	<0,0041	<0,0058	<0,0047	<0,0043	<0,0063	<0,012	<0,012	<0,14	<0,027	

Parametro	benzene	etilbenzene	stirene	toluene	o-xilene	m,p-xilene	xilene	C<12	MtBE	C>12
U.M.	mg/kg ss	mg/kg ss	mg/kg ss	mg/kg ss	mg/kg ss	mg/kg ss	mg/kg ss	mg/kg ss	mg/kg ss	mg/kg ss
CSR	0,1	0,5	0,5	0,5	0,5	0,5	0,5	46	10	421
S7 (1,6-2,6mt)										44,5
S7 (2,1mt)	<0,0032	0,031	<0,0038	<0,0034	0,36	0,35	0,71	16,4	<0,021	
S8 (1,6-2,6mt)										12,6
S8 (1,6-2,6mt) ARPA										< 20
S8 (2,1mt)	<0,0036	<0,0051	<0,0041	<0,0038	<0,0056	<0,011	<0,011	<0,12	<0,023	
S8 (2,1mt) ARPA							5,97	31		
S9 (1,7-2,7mt)										87
S9 (1,7-2,7mt) ARPA										< 20
S9 (2,2mt)	<0,0047	<0,0067	<0,0055	<0,005	<0,0074	<0,014	<0,014	<0,16	<0,031	
S9 (2,2mt) ARPA								< 1		
S10 (1,2-2,2mt)										2530
S10 (1,2-2,2 mt) ARPA										3692
S10 (2mt)	<0,0035	3,1	<0,004	0,84	7,44	14	21,4	520	<0,023	
S10 (2mt) ARPA	0,23	1,51		5,56			11,82	166		
S10 (2,2-3,1mt)										6800
S10 (2,2-3,1mt) ARPA										9225
S10 (2,9mt)	2,4	20,7	<0,0038	35	57	113	170	4270	<0,021	
S10 (2,9mt) ARPA	1,79	6,99	< 0,05	15,1			77,92	823	9	
S11 (1-2mt)										1200
S11 (1-2mt) ARPA										1207
S11 (1,5mt)	<0,021	<0,029	<0,024	<0,022	<0,032	<0,062	<0,062	12,2	<0,14	
S11 (2-3mt)										1440
S11 (2-3mt) ARPA										2529
S11 (2,5mt)	<0,0043	0,194	<0,0051	<0,0046	1,7	2,15	3,9	167	<0,028	

Parametro	benzene	etilbenzene	stirene	toluene	o-xilene	m,p-xilene	xilene	C<12	MtBE	C>12
U.M.	mg/kg ss	mg/kg ss	mg/kg ss	mg/kg ss	mg/kg ss	mg/kg ss	mg/kg ss	mg/kg ss	mg/kg ss	mg/kg ss
CSR	0,1	0,5	0,5	0,5	0,5	0,5	0,5	46	10	421
S11 (2,5mt) ARPA	< 0,05	< 0,05	< 0,05	< 0,05			< 0,15	1	< 1	
S12 (1,6-2,6mt)										5,54
S12 (2,1mt)	<0,0052	<0,0074	<0,0061	<0,0055	<0,0081	<0,016	<0,016	<0,18	<0,034	
S14 (2,7mt)	<0,0045	<0,0064	<0,0052	<0,0047	<0,007	<0,013		<0,15	<0,029	
S15 (1,7-2,7mt)										<3,8
S15 (2,2mt)	<0,023	<0,032	<0,026	<0,024	<0,035	<0,068	<0,068	<0,78	<0,15	
S18 (1,7-2,7mt)										<3,9
S18 (1,7-2,7 mt) ARPA										< 20
S18 (2,2mt)	<0,023	<0,033	<0,027	<0,025	<0,037	<0,069	<0,069	<0,8	<0,15	
S18 (2,2mt) ARPA								< 1		
S19 (1,8-2,8mt)										68
S19 (2,3mt)	<0,0047	<0,0066	<0,0054	<0,0049	<0,0073	<0,014	<0,014	<0,16	<0,03	
S20 (1,8-2,8 mt)										<3,4
S20 (1,8-2,8 mt) ARPA										< 20
S20 (2,3 mt)	<0,00046	<0,00058	<0,00043	0,000938	<0,00046	<0,0016	<0,0016	<0,12	<0,00042	
S20 (2,3 mt) ARPA								< 1		
S20 (3-4 mt)										<3,4
S20 (3,5 mt)	<0,00037	<0,00046	<0,00034	0,000594	<0,00036	<0,0013	<0,0013	<0,099	<0,00034	
S21 (0,5 mt) ARPA	< 0,05	< 0,05	< 0,05	< 0,05			< 0,15	<0,12		
S21 (1-2 mt)										<3,5
S21 (1,5 mt)	<0,00042	<0,00052	<0,00039	0,000714	<0,00041	<0,0015	<0,0015	<0,11	<0,00039	
S21 (2-3 mt)										<3,5
S21 (2,5 mt)	<0,00038	<0,00048	<0,00036	0,000879	<0,00038	<0,0013	<0,0013	<0,10	<0,00035	
S22 (1-2,5 mt)										<3,4

Parametro	benzene	etilbenzene	stirene	toluene	o-xilene	m,p-xilene	xilene	C<12	MtBE	C>12
U.M.	mg/kg ss	mg/kg ss	mg/kg ss	mg/kg ss	mg/kg ss	mg/kg ss	mg/kg ss	mg/kg ss	mg/kg ss	mg/kg ss
CSR	0,1	0,5	0,5	0,5	0,5	0,5	0,5	46	10	421
S22 (2,0 mt)	<0,00035	<0,00044	<0,00033	0,00072	<0,00035	<0,0012	<0,0012	<0,096	<0,00033	
C0 Mamom. 1 0-1,10 m	< 0,01	< 0,05	< 0,05	< 0,05			< 0,05	< 1	< 0,01	< 25
C1 Mamom. 1 1,90 m	7	71,1	< 0,05	160			229	1440	5,7	8821
C2 Mamom. 1 2,80 m	6,6	76,9	< 0,05	193			253	1735	3,3	20357
C0 Trincea 0-1,8 m	< 0,01	< 0,05	< 0,05	< 0,05			< 0,05	< 1	< 0,01	< 25
C2 Trincea 2,8 m	< 0,01	< 0,05	< 0,05	< 0,05			< 0,05	< 1	< 0,01	< 25
C4 Trincea (Parete SUD) 2,0 m	< 0,01	< 0,05	< 0,05	< 0,05			< 0,05	< 1	< 0,01	< 25
C1 Trincea (Parete EST) 2,0 m	< 0,01	< 0,05	< 0,05	< 0,05			< 0,05	< 1	< 0,01	< 25
C1 Trincea (Parete OVEST) 2,0 m	< 0,01	< 0,05	< 0,05	< 0,05			< 0,05	< 1	< 0,01	< 25
C3 Trincea (Parete NORD) 2,0 m	< 0,01	< 0,05	< 0,05	< 0,05			< 0,05	< 1	< 0,01	< 25
T3-PO3 (med.)	< 0,01	< 0,05	< 0,05	< 0,05			< 0,05	< 1	< 0,01	< 25
T3-PE3 (med.)	0,01	< 0,05	< 0,05	0,07			< 0,05	< 1	< 0,01	< 25
T3-FS3 (-2 m)	< 0,01	< 0,05	< 0,05	< 0,05			< 0,05	< 1	< 0,01	< 25
T4-PO4 (med.)	< 0,01	< 0,05	< 0,05	< 0,05			< 0,05	< 1	0,03	< 25
T4-PE4 (med.)	< 0,01	< 0,05	< 0,05	< 0,05			< 0,05	< 1	0,21	< 25
T4-FS4 (-2 m)	< 0,01	< 0,05	< 0,05	< 0,05			< 0,05	< 1	0,06	< 25
C1 (2-3 m)	< 0,01	< 0,05	< 0,05	< 0,05			< 0,05	< 1	0,06	54,3
C1 (3,8-4,5 m)	18,3	116	< 0,05	557			480	4986	13,1	21533
C2 (2-3 m)	< 0,01	< 0,05	< 0,05	< 0,05			< 0,05	< 1	< 0,01	29,9
C2 (3,6-4 m)	11,8	121	< 0,05	462			546	2019	27,8	1287
C2 (4-5 m)	0,02	< 0,05	< 0,05	0,14			0,1	< 1	0,17	< 25
C3 (2-3 m)	< 0,01	< 0,05	< 0,05	< 0,05			< 0,05	< 1	0,03	184
C3 (3,6-4,4 m)	1	7,7	0,85	4,4			539	694	< 0,01	13693
C3 (4,5-5,0 m)	0,03	1,5	< 0,05	1			10,4	424	0,08	1591

Parametro	benzene	etilbenzene	stirene	toluene	o-xilene	m,p-xilene	xilene	C<12	MtBE	C>12
U.M.	mg/kg ss	mg/kg ss	mg/kg ss	mg/kg ss	mg/kg ss	mg/kg ss	mg/kg ss	mg/kg ss	mg/kg ss	mg/kg ss
CSR	0,1	0,5	0,5	0,5	0,5	0,5	0,5	46	10	421
C4 (2,5-3,4 m)	0,3	97,3	< 0,05	301			411	1636	2,7	9166
C4 (3,4-3,5 m)	< 0,01	< 0,05	< 0,05	< 0,05			< 0,05	< 1	< 0,01	110
C5 (2,6-3,10 m)	3,8	11,8	< 0,05	50,7			67,8	1321	5,5	14371
C7 (2,7-3,5 m)	12,5	387	5	1909			2081	5535	10,1	4510

Tabella 32 – Confronto CRS vs Obiettivi di bonifica, suolo profondo

I risultati del confronto confermano – come facilmente prevedibile – i superamenti già riscontrati in fase di caratterizzazione per i solventi aromatici e l'MtBE; per quanto attiene gli idrocarburi leggeri e pesanti, le situazioni di non conformità a valle del presente studio permangono nei punti S7, S8, S10, S11, Scavo Manomissione 1, C1, C2, C3, C4, C5, C7.

Alla luce di quanto riscontrato, si può pertanto concludere che il suolo profondo risulta contaminato nei punti in cui sono stati riscontrati superamenti degli obiettivi di bonifica definiti attraverso il presente studio.

6.5.3 FALDA

Per quanto attiene le acque sotterranee, considerato che gli obiettivi di bonifica corrispondono alle CSC, si conferma lo stato di contaminazione della matrice, rilevata in fase di caratterizzazione e nell'ambito delle varie campagne di monitoraggio sin qui condotte in corrispondenza dei punti PZ4 internamente al sito, PZ2 (POC) al confine del sito e PZ8 a valle del sito.

7. CONCLUSIONI

Lo studio illustrato nel presente documento ha avuto per oggetto l'analisi di rischio sito specifica condotta per il sito di Gravellona Lomellina, Località Salto Crocetta, in corrispondenza del quale, nell'aprile del 2016 sono state riscontrate due manomissioni a carico dell'Oleodotto SARPOM DN8" Trecate Savona Vado Ligure.

Le indagini svolte hanno accertato il superamento delle CSC e una potenziale contaminazione del suolo superficiale e suolo profondo esclusivamente nella zona in cui è stata riscontrata la "Manomissione n. 1" mentre, per quanto riguarda la "Manomissione n. 2" è stata accertata la piena conformità delle suddette matrici, escludendo ogni possibile contaminazione.

Attraverso le indagini, dal luglio 2017, è stata riscontrata una contaminazione delle acque sotterranee nei piezometri interni PZ4 e PZ2, ubicati in valle idrogeologica rispetto alla "Manomissione 1" mentre i piezometri PZ3 e PZ5 interni, ubicati in valle idrogeologica rispetto alla "Manomissione 2", non presentano situazioni di non conformità rispetto alle CSC di legge.

Per quanto attiene i piezometri di valle esterni al sito, realizzati nel dicembre 2018 e oggetto di monitoraggio dal 25 gennaio 2019, si confermano situazioni di conformità nei piezometri PZ6, PZ7 e PZ9 mentre, presso PZ8, si rilevano concentrazioni eccedenti le CSC per il Benzene e gli Idrocarburi.

In relazione alla contaminazione delle acque sotterranee, a partire dal Luglio 2017 vengono eseguiti interventi di messa in sicurezza d'emergenza, mediante attività di pump & stock; successivamente sono state avviate le procedure tecnico amministrative per l'ottenimento delle necessarie autorizzazioni e concessioni finalizzate alla realizzazione di un impianto pump & treat a scala di sito, attualmente in corso di realizzazione e prossimo ad essere ultimato.

Sulla base dei dati delle varie fasi di indagini che hanno interessato il sito è stata sviluppata un'analisi di rischio sito specifica attraverso l'impiego del software Risk-net 3.1 pro, che applica la procedura prevista dalle Linee Guida ex APAT e MATTM e utilizza la banca dati dei parametri chimico fisici e tossicologici ISS-INAIL aggiornata al marzo 2018.

Nel complesso sono state svolte 5 elaborazioni E0÷E4, attraverso le quali sono stati definiti:

- E0: stima della distanza dal sito alla quale le acque sotterranee risultano conformi, ai fini della perimetrazione della sorgente in falda per la stima dei rischi da inalazione vapori;
- E1: stima del rischio e degli obiettivi di bonifica per i lavoratori e per la falda, da suolo superficiale e profondo, in condizioni di minima soggiacenza;
- E2: stima del rischio e degli obiettivi di bonifica per i lavoratori e per la falda, da suolo superficiale e profondo, in condizioni di massima soggiacenza;
- E3: stima del rischio per la falda e per i lavoratori da sorgente falda;
- E4: verifica accettabilità degli obiettivi di bonifica per suolo superficiale e profondo per gli idrocarburi leggeri e pesanti considerando le condizioni di rischio maggiormente cautelativo (E1 per suolo superficiale, E2 per suolo profondo).

Le elaborazioni condotte hanno permesso di rilevare quanto segue:

- Assenza di rischio da suolo superficiale per i bersagli considerati;
- Assenza di rischio da suolo profondo per i lavoratori e rischio per la falda;
- Rischio dalla falda per superamento delle CSC al POC e potenziale rischio da inalazione vapori outdoor per il parametro Alifatici C5-C8.

In merito a quest'ultimo aspetto occorre evidenziare quanto la stima del rischio risenti delle eccessive cautele introdotte dall'applicazione di quanto stabilito nelle Linee Guida, in relazione al fatto che alla sorgente in falda, considerata estesa fino a 750 mt dal sito, si è dovuto attribuire la concentrazione massima rilevata all'interno del sito, portando ad un risultato inverosimile e certamente sovrastimato.

Gli obiettivi di bonifica, confrontati con le concentrazioni misurate nelle varie sorgenti di contaminazione secondaria individuate, rispetto all'art. 240 del D.Lgs. 152/06 e s.m.i. permettono di giungere alle seguenti conclusioni:

- Il suolo superficiale risulta NON CONTAMINATO;
- Il suolo profondo risulta CONTAMINATO da Solventi Aromatici, MtBE, Idrocarburi leggeri e pesanti;
- Le acque sotterranee risultano contaminate da Solventi Aromatici, MtBE, Idrocarburi totali come n-Esano sia all'interno del sito (PZ4, PZ2) che in un piezometro a valle (PZ8).

Alla luce di quanto evidenziato dallo studio si rende pertanto necessario un Progetto Operativo di Bonifica / Messa in Sicurezza Operativa, volto ad individuare gli interventi necessari per il contenimento della contaminazione e/o la riduzione delle concentrazioni rilevate nelle sorgenti a valori inferiori alle CSR.

Allegato 1)

Rapporti di prova monitoraggio 7/7/2017

Rapporti di prova monitoraggio 21/7/2017

Rapporti di prova monitoraggio 12/10/2017

Rapporti di prova monitoraggio 9/11/2017

Rapporti di prova monitoraggio 11/1/2018

Rapporti di prova monitoraggio 15/2/2018

Rapporti di prova monitoraggio 20/3/2018

Rapporti di prova monitoraggio 19/6/2018

Rapporti di prova monitoraggio 31/7/2018

Rapporti di prova monitoraggio 28/8/2018

Rapporti di prova monitoraggio 25/9/2018

Rapporti di prova monitoraggio 23/10/2018

Rapporti di prova monitoraggio 20/11/2018

Rapporti di prova monitoraggio 18/12/2018

Rapporti di prova monitoraggio 25/1/2019

Allegato 16)

Files elaborazioni E0-E4

Allegato 17)

Files elaborazioni PROUCI

Allegato 18)

Files dati meteoclimatici